Robust human action recognition based on depth motion maps and improved convolutional neural network

计算机科学 人工智能 动作识别 卷积神经网络 计算机视觉 模式识别(心理学) 运动(物理) 人工神经网络 动作(物理) 人体运动 班级(哲学) 量子力学 物理
作者
Linqin Cai,Xiaolin Liu,Chen Fu-li,Min Xiang
出处
期刊:Journal of Electronic Imaging [SPIE]
卷期号:27 (05): 1-1 被引量:13
标识
DOI:10.1117/1.jei.27.5.051218
摘要

Human action recognition has been widely used in various fields of computer vision, pattern recognition, and human–computer interaction and has attracted substantial attention. Combining deep learning and depth information, this paper proposed a method of human action recognition based on improved convolutional neural networks (CNN). First, we use the depth motion maps to extract the depth sequence features and obtain three projected maps corresponding to front, side, and the top views. On this basis, an improved CNN is constructed to realize the recognition of human action, which uses three-dimensional (3-D) input and two-dimensional process identification to speed up the computation and reduce the complexity of recognition process. We evaluate our approach on two public 3-D action datasets: MSR Action3D dataset and UT-Kinect dataset, and our private CTP Action3D dataset built using Kinect to collect data. The experimental results show that the proposed methods of human action recognition achieve higher average recognition rate of 91.3% on MSR Action3D dataset, 97.98% on UT-Kinect dataset, and the average recognition rate is 93.8% on our CTP Action3D dataset. Furthermore, the trained model on one depth video sequence dataset can be easily generalized to different datasets without changing network parameters.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助耐凡不哭采纳,获得10
1秒前
韩夏菲完成签到,获得积分10
1秒前
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
李健应助科研通管家采纳,获得10
1秒前
Lucas应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
研友_VZG7GZ应助科研通管家采纳,获得10
2秒前
bkagyin应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
2秒前
3秒前
3秒前
起起发布了新的文献求助10
3秒前
6秒前
beibeibaobao发布了新的文献求助10
6秒前
勤H完成签到 ,获得积分10
7秒前
博修发布了新的文献求助10
7秒前
pluto应助韩夏菲采纳,获得10
9秒前
9秒前
科研通AI5应助执着又蓝采纳,获得10
10秒前
Adeline发布了新的文献求助30
10秒前
YYL完成签到,获得积分10
10秒前
13秒前
16秒前
今天要喝椰汁完成签到,获得积分10
17秒前
Abelsci完成签到,获得积分0
18秒前
爱笑的岩完成签到,获得积分10
18秒前
乐乐应助ffang采纳,获得10
19秒前
安东尼发布了新的文献求助10
20秒前
20秒前
Biohacking完成签到,获得积分10
21秒前
爱笑的岩发布了新的文献求助10
22秒前
暖冬的向日葵完成签到,获得积分10
23秒前
23秒前
Ava应助博修采纳,获得10
24秒前
24秒前
25秒前
26秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799266
求助须知:如何正确求助?哪些是违规求助? 3344889
关于积分的说明 10322458
捐赠科研通 3061369
什么是DOI,文献DOI怎么找? 1680310
邀请新用户注册赠送积分活动 806960
科研通“疑难数据库(出版商)”最低求助积分说明 763451