Explainable Normative Modeling for Brain Disorder Identification in Resting-State fMRI

正态性 计算机科学 人工智能 规范性 鉴定(生物学) 机器学习 功能磁共振成像 神经影像学 模式识别(心理学) 代表(政治) 正规化(语言学) 构造(python库) 决策规范模型 大脑活动与冥想 最佳显著性理论 人工神经网络 深度学习 心理学 前提 甲骨文公司 特征学习 无监督学习
作者
Yeajin Shon,Eunsong Kang,Da-Woon Heo,Heung-Il Suk
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:PP: 1-1
标识
DOI:10.1109/tmi.2025.3631105
摘要

Accurate identification of brain disorders enables timely intervention and improved patient outcomes. While numerous studies have developed AI models for resting-state functional magnetic resonance imaging (rs-fMRI) analysis, most rely on supervised learning, which can overlook hidden patterns that are less discriminatively associated with labels and require large annotated datasets. To address these limitations, we propose leveraging normative modeling, an unsupervised approach that constructs a model of normality based on healthy controls' data. Deviations from normality indicate potential disorders. However, applying normative modeling to rs-fMRI faces two significant challenges: constructing normality and ensuring explainability. To tackle these challenges, we propose BRAINEXA, a novel framework enhancing normative modeling for rs-fMRI-based brain disorder identification. Specifically, to construct accurate and stable normality, BRAINEXA introduces a training strategy that predicts more informative regions from less informative regions, discouraging trivial self-supervised learning solutions and improving representation learning without additional overhead. Furthermore, we incorporate spatiotemporal mutual information regularization to preserve distinctiveness between more informative regions and less informative regions during latent encoding, preventing potential representational distortions. For interpretability, BRAINEXA extracts normality-defining (ND) subregions, the core regions that characterize normal brain function. By combining ND subregions with anomaly scores, BRAINEXA can offer region- and connection-wise explanations that help identify clinically meaningful disruptions of normality in an unsupervised setting. We demonstrate the effectiveness of BRAINEXA on four public rs-fMRI datasets: REST-meta-MDD, ABIDE I, ADHD-200, and OASIS-3. Our code is available at https://github.com/ku-milab/BRAINEXA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
星辰大海应助yu采纳,获得10
1秒前
留胡子的访曼完成签到 ,获得积分20
2秒前
2秒前
2秒前
QianLiu发布了新的文献求助10
2秒前
shaychomac发布了新的文献求助10
2秒前
Fenact发布了新的文献求助10
3秒前
科研通AI6应助DJDJDDDJ采纳,获得10
4秒前
5秒前
天天发布了新的文献求助10
5秒前
5秒前
mera发布了新的文献求助10
6秒前
7秒前
8秒前
8秒前
8秒前
虾虾发布了新的文献求助10
8秒前
浮游应助等等有力气采纳,获得10
10秒前
10秒前
11秒前
11秒前
Luckyyy777发布了新的文献求助50
12秒前
QianLiu完成签到,获得积分10
12秒前
田様应助科研通管家采纳,获得10
13秒前
13秒前
今后应助科研通管家采纳,获得10
13秒前
FashionBoy应助科研通管家采纳,获得10
13秒前
思源应助科研通管家采纳,获得10
13秒前
XDD发布了新的文献求助10
13秒前
orixero应助科研通管家采纳,获得10
13秒前
华仔应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
无极微光应助科研通管家采纳,获得20
13秒前
小马甲应助科研通管家采纳,获得10
13秒前
Akim应助科研通管家采纳,获得10
14秒前
爆米花应助科研通管家采纳,获得10
14秒前
小蘑菇应助科研通管家采纳,获得10
14秒前
Jasper应助科研通管家采纳,获得10
14秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5453448
求助须知:如何正确求助?哪些是违规求助? 4561113
关于积分的说明 14280735
捐赠科研通 4485117
什么是DOI,文献DOI怎么找? 2456483
邀请新用户注册赠送积分活动 1447238
关于科研通互助平台的介绍 1422640