亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Acellular Dermal Matrix Susceptibility to Collagen Digestion: Effect on Mechanics and Host Response

胶原酶 极限抗拉强度 化学 生物医学工程 医学 复合材料 材料科学 生物化学
作者
Eric Stec,Jared Lombardi,Jephte Augustin,Maryellen Sandor
出处
期刊:Tissue Engineering Part A [Mary Ann Liebert, Inc.]
卷期号:29 (9-10): 269-281 被引量:2
标识
DOI:10.1089/ten.tea.2022.0155
摘要

Various tissue origins and manufacturing processes can differentially affect the retention of native properties of acellular dermal matrices (ADMs); however, comparative studies are limited. Head-to-head comparisons between different configurations of porcine-derived Strattice (Allergan Aesthetics, an AbbVie Company, Irvine, CA) and bovine-derived SurgiMend (Integra LifeSciences, Billerica, MA) ADMs were performed to evaluate mechanical integrity and host tissue biologic response. Thermodynamic profile and morphology, which affect retention of mechanical strength, were evaluated through differential scanning calorimetry, scanning electron microscopy, and histology. Mechanical strength was assessed through tensile testing following collagenase exposure in vitro and following subcutaneous implantation in a rodent model. Host biologic response was evaluated through histopathology. Compared with respective native tissues, reductions in onset melting temperature following tissue processing were smaller for Strattice Firm versus SurgiMend 1.0 (Δ0.79°C vs. Δ5.77°C), Strattice Extra Thick versus SurgiMend 3.0 (Δ1.57°C vs. Δ4.79°C), and Strattice Perforated versus SurgiMend Microperforated (Δ1.18°C vs. Δ7.76°C), with similar trends for peak melting temperature. Strattice maintained native dermal architecture versus compacted collagen with process-induced interstices observed for SurgiMend. Strattice Firm, Extra Thick, and Perforated retained 33.44%, 65.65%, and 17.20% of initial strength after 48 h exposure to excess collagenase, while the SurgiMend ADMs were completely digested by 48 h. At 6 weeks postimplantation, both Strattice and SurgiMend showed minimal inflammatory response, but greater fibroblast repopulation was evident for Strattice. Strattice Firm had higher maximum load (145.85 ± 33.05 N/cm vs. 24.29 ± 12.35 N/cm, p ≤ 0.01), maximum stress (8.20 ± 1.91 MPa vs. 2.24 ± 1.27 Mpa, p ≤ 0.01), and stiffness (7491.00 ± 1981.32 N/cm vs. 737.56 ± 292.55 N/cm, p ≤ 0.01) than SurgiMend 1.0. Strattice Extra Thick had lower maximum load (198.54 ± 58.79 N/cm vs. 303.08 ± 76.76 N/cm, p < 0.05) than SurgiMend 3.0, but similar maximum stress (6.96 ± 1.78 Mpa vs. 8.73 ± 2.15 Mpa) and stiffness (13386.11 ± 3123.28 N/cm vs. 9389.02 ± 4860.67 N/cm). Strattice Perforated had higher maximum load (72.65 ± 41.44 N/cm vs. 10.23 ± 4.67 N/cm, p < 0.05) and maximum stress (4.08 ± 2.08 Mpa vs. 0.44 ± 0.19 p < 0.05) than SurgiMend Microperforated. Maximum load retention rates following implantation were higher for Strattice Firm versus SurgiMend 1.0 (37.85% vs. 8.03%), Strattice Extra Thick versus SurgiMend 3.0 (45.03% vs. 37.80%), and Strattice Perforated versus SurgiMend Microperforated (28.04% vs. 6.21%). Similar results were obtained for maximum stress and stiffness. In conclusion, Strattice retained greater mechanical strength in vitro and in vivo, while exhibiting greater fibroblast cell infiltration. Impact statement Acellular dermal matrix (ADM)-derived surgical meshes are used in abdominal wall reconstruction procedures, such as hernia repair. Comparative studies evaluating the mechanical properties of ADMs and how they integrate with host tissue are essential because these properties impact performance in a clinical setting. This study compared the maintenance of mechanical integrity and host tissue biologic response of two commercially available ADMs, Strattice and SurgiMend, using in vitro and in vivo techniques. A better understanding of the properties of ADMs is expected to impact mesh selection and help to minimize the incidence of herniation recurrence and need for revisional surgery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助wise111采纳,获得10
23秒前
绫艾完成签到,获得积分20
33秒前
36秒前
行走完成签到,获得积分10
41秒前
wise111发布了新的文献求助10
43秒前
烟花应助wise111采纳,获得10
54秒前
Akim应助科研通管家采纳,获得10
58秒前
1分钟前
wise111发布了新的文献求助10
1分钟前
ding应助wise111采纳,获得10
1分钟前
Ji完成签到,获得积分10
2分钟前
2分钟前
present发布了新的文献求助10
2分钟前
2分钟前
JamesPei应助present采纳,获得10
2分钟前
wise111发布了新的文献求助10
2分钟前
KINGAZX完成签到 ,获得积分10
3分钟前
希望天下0贩的0应助wise111采纳,获得30
3分钟前
HS完成签到,获得积分0
3分钟前
3分钟前
3分钟前
wise111发布了新的文献求助30
3分钟前
3分钟前
dy260发布了新的文献求助10
3分钟前
3分钟前
wwwwx发布了新的文献求助10
3分钟前
万能图书馆应助dy260采纳,获得10
3分钟前
wise111发布了新的文献求助10
4分钟前
大个应助wise111采纳,获得10
4分钟前
伍慕儿完成签到 ,获得积分10
4分钟前
al完成签到 ,获得积分10
4分钟前
4分钟前
充电宝应助科研通管家采纳,获得10
4分钟前
你博哥完成签到 ,获得积分10
5分钟前
wise111发布了新的文献求助10
5分钟前
5分钟前
彩色幼南发布了新的文献求助10
6分钟前
心随以动完成签到 ,获得积分10
6分钟前
修辛完成签到 ,获得积分10
6分钟前
小白菜完成签到,获得积分10
6分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792512
求助须知:如何正确求助?哪些是违规求助? 3336729
关于积分的说明 10281976
捐赠科研通 3053482
什么是DOI,文献DOI怎么找? 1675649
邀请新用户注册赠送积分活动 803609
科研通“疑难数据库(出版商)”最低求助积分说明 761468