Nitrate Hysteresis as a Tool for Revealing Storm‐Event Dynamics and Improving Water Quality Model Performance

环境科学 水质 磁滞 硝酸盐 水文学(农业) 土壤科学 工程类 生态学 岩土工程 物理 量子力学 生物
作者
Admin Husic,James F. Fox,Evan Clare,Tyler Mahoney,Amirreza Zarnaghsh
出处
期刊:Water Resources Research [Wiley]
卷期号:59 (1) 被引量:10
标识
DOI:10.1029/2022wr033180
摘要

Abstract Understanding the physics of nitrate contamination in surface and subsurface water is vital for mitigating downstream water quality impairment. Though high frequency sensor data have become readily available and computational models more accessible, the integration of these two methods for improved prediction is underdeveloped. The objective of this study was to utilize high‐frequency data to advance our understanding and model representation of nitrate transport for an agricultural karst spring in Kentucky, USA. We collected 2‐years of 15‐min nitrate and specific conductance data and analyzed source‐timing dynamics across dozens of events to develop a conceptual model for nitrate hysteresis in karst. Thereafter, we used the sensing data, specifically discharge‐concentration indices, to constrain modeled nitrate prediction bounds as well as the uncertainty of hydrologic and nitrogen processes, such as soil percolation and biogeochemical transformation. Observed nitrate hysteresis behavior at the spring was complex and included clockwise ( n = 11), counterclockwise ( n = 13), and figure‐eight ( n = 10) shapes, which contrasts with surface systems that are often dominated by a single hysteresis shape. Sensing results highlight the importance of antecedent connectivity to nitrate‐rich storages in determining the timing of nitrate delivery to the spring. After integrating hysteresis analysis into our numerical model evaluation, simulated nitrate prediction bounds were reduced by 43 ± 12% and parameter uncertainty by 36 ± 20%. Taken together, this study suggests that discharge‐concentration indices derived from high‐frequency sensor data can be successfully integrated into numerical models to improve process representation and reduce modeled uncertainty.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TRY完成签到,获得积分10
1秒前
HandsomeShaw完成签到,获得积分10
3秒前
小雨关注了科研通微信公众号
3秒前
无花果应助朔夜采纳,获得10
3秒前
舒心发布了新的文献求助10
4秒前
芜湖完成签到,获得积分20
6秒前
纯真抽屉完成签到,获得积分10
7秒前
Harish完成签到,获得积分10
9秒前
打打应助科研通管家采纳,获得10
11秒前
深情安青应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
今后应助科研通管家采纳,获得10
11秒前
彭于晏应助科研通管家采纳,获得10
12秒前
顾矜应助科研通管家采纳,获得10
12秒前
领导范儿应助科研通管家采纳,获得10
12秒前
12秒前
充电宝应助科研通管家采纳,获得10
12秒前
12秒前
16秒前
16秒前
Owen应助manan采纳,获得10
21秒前
22秒前
Juvenilesy完成签到 ,获得积分10
26秒前
26秒前
丘比特应助musong采纳,获得10
28秒前
动漫大师发布了新的文献求助10
31秒前
科研通AI5应助健忘的金采纳,获得10
33秒前
35秒前
加油加油发布了新的文献求助10
38秒前
40秒前
musong发布了新的文献求助10
40秒前
41秒前
41秒前
41秒前
43秒前
43秒前
43秒前
去晒月亮完成签到,获得积分10
44秒前
朔夜发布了新的文献求助10
44秒前
46秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781398
求助须知:如何正确求助?哪些是违规求助? 3326904
关于积分的说明 10228819
捐赠科研通 3041892
什么是DOI,文献DOI怎么找? 1669623
邀请新用户注册赠送积分活动 799180
科研通“疑难数据库(出版商)”最低求助积分说明 758751