Assessing Metabolic Markers in Glioblastoma Using Machine Learning: A Systematic Review

胶质母细胞瘤 范畴变量 机器学习 医学诊断 人工智能 医学 算法 计算机科学 病理 癌症研究
作者
Zachery D. Neil,Noah Pierzchajlo,Candler Boyett,Olivia Little,Cathleen C. Kuo,Nolan J. Brown,Julian Gendreau
出处
期刊:Metabolites [Multidisciplinary Digital Publishing Institute]
卷期号:13 (2): 161-161 被引量:6
标识
DOI:10.3390/metabo13020161
摘要

Glioblastoma (GBM) is a common and deadly brain tumor with late diagnoses and poor prognoses. Machine learning (ML) is an emerging tool that can create highly accurate diagnostic and prognostic prediction models. This paper aimed to systematically search the literature on ML for GBM metabolism and assess recent advancements. A literature search was performed using predetermined search terms. Articles describing the use of an ML algorithm for GBM metabolism were included. Ten studies met the inclusion criteria for analysis: diagnostic (n = 3, 30%), prognostic (n = 6, 60%), or both (n = 1, 10%). Most studies analyzed data from multiple databases, while 50% (n = 5) included additional original samples. At least 2536 data samples were run through an ML algorithm. Twenty-seven ML algorithms were recorded with a mean of 2.8 algorithms per study. Algorithms were supervised (n = 24, 89%), unsupervised (n = 3, 11%), continuous (n = 19, 70%), or categorical (n = 8, 30%). The mean reported accuracy and AUC of ROC were 95.63% and 0.779, respectively. One hundred six metabolic markers were identified, but only EMP3 was reported in multiple studies. Many studies have identified potential biomarkers for GBM diagnosis and prognostication. These algorithms show promise; however, a consensus on even a handful of biomarkers has not yet been made.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LiuYan发布了新的文献求助10
刚刚
啊哭发布了新的文献求助10
1秒前
科研通AI5应助NICAI采纳,获得10
1秒前
sumugeng完成签到,获得积分10
2秒前
NingnnnZhang发布了新的文献求助10
2秒前
yzm关闭了yzm文献求助
3秒前
情怀应助伴Y采纳,获得10
3秒前
听语说完成签到 ,获得积分10
4秒前
无花果应助派大凯不是俺采纳,获得10
5秒前
大萝贝完成签到,获得积分10
8秒前
8秒前
9秒前
朝夕发布了新的文献求助10
9秒前
11秒前
WenzongLai完成签到,获得积分10
11秒前
梅赛德斯奔驰完成签到,获得积分10
13秒前
13秒前
小晓发布了新的文献求助10
15秒前
芝芝完成签到,获得积分10
15秒前
15秒前
zzyl完成签到,获得积分10
15秒前
16秒前
刘冠廷发布了新的文献求助30
16秒前
弎夜完成签到,获得积分10
16秒前
16秒前
17秒前
18秒前
19秒前
HEAUBOOK应助ZXR采纳,获得10
20秒前
余慕康发布了新的文献求助10
20秒前
王雪发布了新的文献求助10
20秒前
博修发布了新的文献求助30
20秒前
南亭完成签到,获得积分10
21秒前
橘子屿布丁完成签到,获得积分10
21秒前
周杰完成签到,获得积分10
21秒前
晨狮完成签到 ,获得积分10
22秒前
Altria发布了新的文献求助10
22秒前
科研通AI5应助唠叨的宝马采纳,获得10
23秒前
共享精神应助bin采纳,获得30
24秒前
一夜暴富完成签到 ,获得积分10
24秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798813
求助须知:如何正确求助?哪些是违规求助? 3344550
关于积分的说明 10320522
捐赠科研通 3060978
什么是DOI,文献DOI怎么找? 1679963
邀请新用户注册赠送积分活动 806813
科研通“疑难数据库(出版商)”最低求助积分说明 763386