Artificial intelligence-driven eye tracker models for Alzheimer's disease diagnosis: A systematic review and meta-analysis

作者
Imen Ketata,Emna Ellouz
出处
期刊:Journal of Alzheimer's Disease [IOS Press]
卷期号:108 (4): 1488-1506 被引量:1
标识
DOI:10.1177/13872877251389145
摘要

Background Diagnosis of Alzheimer's disease (AD) is crucial for effective intervention and care planning. Recently, artificial intelligence-driven eye-tracking (AI-driven ET) tools have emerged as promising diagnostic aids. Objective To evaluate the diagnostic accuracy of AI-driven ET models for AD detection. Methods A systematic review and meta-analysis were conducted according to PRISMA2020. Different database and grey literature were searched up to March 2025. Data were analyzed with Meta-Disc 1.4 and R software. This meta-analysis has been registered in PROSPERO (CRD420251020284). Results Ten papers were included in the narrative synthesis and eight in the meta-analysis. Our systematic review found that most studies reported moderate to good accuracy of AI-driven ET tools in AD detection. The meta-analysis revealed that AI-driven ET tools achieved a sensitivity of 0.75 [95% CI: 0.67; 0.79], specificity of 0.75 [95% CI: 0.67; 0.81], positive likelihood ratio of 3.29 [95% CI: 2.36; 4.59], negative likelihood ratio of 0.36 [95% CI: 0.27; 0.48], diagnostic odds ratio of 10.40 [95% CI: 5.58; 19.39], and area under the ROC curve of 0.81. Deep learning seems to have better performance than supervised machine learning (SML). Among classification algorithms, support vector machines appear most robust across studies. The meta-regression identified population size, patient preparation, measurement systems, AI techniques, and SML algorithms as significant sources of heterogeneity. Conclusions AI-driven ET tools suggest moderate to good diagnostic accuracy for distinguishing AD patients from healthy controls, based on available case-control studies. However, evidence for effective screening in broader populations is lacking. Further research is needed to confirm these results across diverse clinical settings and strengthen model robustness.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mashuai发布了新的文献求助10
刚刚
生椰拿铁发布了新的文献求助10
1秒前
L_JIN完成签到,获得积分10
2秒前
zzzz发布了新的文献求助10
2秒前
aoieng发布了新的文献求助10
3秒前
tianliyan发布了新的文献求助10
3秒前
3秒前
3秒前
小蘑菇应助ZDM6094采纳,获得10
3秒前
科研通AI2S应助霖夏采纳,获得10
4秒前
paul完成签到,获得积分10
5秒前
5秒前
环状托叶痕完成签到,获得积分10
5秒前
隐形曼青应助温暖的靖采纳,获得10
5秒前
5秒前
qi发布了新的文献求助10
6秒前
xiaolei完成签到,获得积分10
7秒前
luria完成签到,获得积分10
7秒前
wzy发布了新的文献求助10
7秒前
7秒前
JamesPei应助陈先生采纳,获得10
7秒前
小蘑菇应助姜姜采纳,获得10
7秒前
丘比特应助phil采纳,获得10
8秒前
8秒前
8秒前
8秒前
ChatGPT发布了新的文献求助10
9秒前
柚子想吃橘子完成签到,获得积分10
9秒前
在水一方应助王木木采纳,获得10
10秒前
元不二发布了新的文献求助10
10秒前
10秒前
文艺怀蝶发布了新的文献求助10
10秒前
干羞花发布了新的文献求助10
11秒前
11秒前
所所应助醒醒采纳,获得10
11秒前
ggbod完成签到,获得积分20
11秒前
11秒前
科研通AI6应助Stephanie采纳,获得10
11秒前
小二郎应助咸鱼采纳,获得10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5526107
求助须知:如何正确求助?哪些是违规求助? 4616283
关于积分的说明 14552778
捐赠科研通 4554503
什么是DOI,文献DOI怎么找? 2495919
邀请新用户注册赠送积分活动 1476266
关于科研通互助平台的介绍 1447928