亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Numerical ellipsometry: Advanced methods for design, testing, and use of artificial intelligence for absorbing films using Jones and/or Mueller measurements

作者
Frank K. Urban,Dávid Barton
出处
期刊:Journal of vacuum science & technology [American Institute of Physics]
卷期号:43 (6)
标识
DOI:10.1116/6.0004875
摘要

The optical properties and thickness of a thin absorbing film deposited on a known substrate can be determined using ellipsometry in real-time using artificial intelligence (AI) in the form of artificial neural networks (ANNs). The desired film parameters are related to visible light reflection measurements through Maxwell’s equations, wavelength, and geometry. One of the primary advantages of the AI method is speed. Prior work by the authors focused on ITO on silicon and chromium on BK-7 glass. The work here describes further developments in the use of AI methods to potentially enable real-time, in situ monitoring of thin film growth in a broader range of applications for any absorbing film on any homogeneous, isotropic substrate. Examples are given using a single angle of incidence (55°) and three angles of incidence (55°, 65°, and 75°) for comparison. Thin absorbing films (up to a nominal 40 nm) are examined using multilayer perceptron ANNs of either 4 or 12 input neurons and 4 output neurons with two hidden layers of 80 neurons each. A separate network is developed independently at each wavelength. Overall predictions depend upon two steps. The first step is the training step in which a large training data set is presented to the ANN, and an error backpropagation algorithm is employed to incrementally adjust its weights. This step is computationally intensive but only needs to be performed once. The second step is prediction, in which ellipsometry measurements are presented to the trained ANN. Thus, the primary purpose of this work is to lay a foundation that is applicable to a vast array of material combinations, examples of which will be treated with measured data in future work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sy193625发布了新的文献求助10
27秒前
小二郎应助倪妮采纳,获得10
37秒前
nihao完成签到 ,获得积分10
59秒前
1分钟前
星辰大海应助sy193625采纳,获得10
1分钟前
1分钟前
1分钟前
111发布了新的文献求助10
1分钟前
1分钟前
111完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
倪妮发布了新的文献求助10
2分钟前
CipherSage应助科研通管家采纳,获得10
2分钟前
yeyeye发布了新的文献求助20
2分钟前
2分钟前
大模型应助柒柒采纳,获得30
2分钟前
linyi发布了新的文献求助10
3分钟前
无花果应助linyi采纳,获得10
3分钟前
竹伪发布了新的文献求助10
3分钟前
Zj发布了新的文献求助30
3分钟前
小小菲兹完成签到,获得积分20
3分钟前
倪妮发布了新的文献求助30
3分钟前
4分钟前
4分钟前
山药汤完成签到 ,获得积分10
4分钟前
小左完成签到,获得积分10
4分钟前
4分钟前
4分钟前
葉鳳怡完成签到 ,获得积分10
4分钟前
香蕉觅云应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
酷波er应助科研通管家采纳,获得10
4分钟前
之_ZH完成签到 ,获得积分10
4分钟前
bkagyin应助zzz采纳,获得10
4分钟前
4分钟前
4分钟前
Ava应助阳光的豆芽采纳,获得10
5分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 2026 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Target genes for RNAi in pest control: A comprehensive overview 600
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
Design and Development of A CMOS Integrated Multimodal Sensor System with Carbon Nano-electrodes for Biosensor Applications 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5104795
求助须知:如何正确求助?哪些是违规求助? 4314873
关于积分的说明 13443807
捐赠科研通 4143302
什么是DOI,文献DOI怎么找? 2270281
邀请新用户注册赠送积分活动 1272797
关于科研通互助平台的介绍 1209743