曲线波变换
阈值
噪音(视频)
压缩传感
信号(编程语言)
振幅
降噪
灵敏度(控制系统)
采样(信号处理)
声学
计算机科学
模式识别(心理学)
人工智能
数学
物理
计算机视觉
小波
光学
小波变换
工程类
电子工程
滤波器(信号处理)
图像(数学)
程序设计语言
作者
Jianguo Song,Zhe Li,Guangyu Wang,Ganglin Lei,Jing Yang
标识
DOI:10.1109/tgrs.2023.3253930
摘要
Conventional curvelet-domain denoising methods suppress random noise by thresholding the amplitude of curvelet coefficients, which makes it hard to distinguish weak seismic signals from random noise because they share the same characteristic of weak amplitude in the curvelet domain. Here we put forward an innovative weak seismic signal enhancement method taht can distinguish weak seismic signals from random noise. After compressive sampling, the curvelet coefficients of weak seismic signals show significant amplitude reduction, whereas random noise does not. We take advantage of this characteristic and design a sensitivity coefficient, the absolute ratio of curvelet coefficients before and after compressive sampling. The sensitivity coefficient can distinguish weak seismic signals from random noise in the curvelet domain better than thresholding the amplitude of curvelet coefficients. The results of synthetic and field seismic data applications both indicate that our method outperforms the conventional curvelet-domain denoising method on weak seismic signal enhancement.
科研通智能强力驱动
Strongly Powered by AbleSci AI