Hybrid Graph Convolutional Network With Online Masked Autoencoder for Robust Multimodal Cancer Survival Prediction

计算机科学 自编码 人工智能 模式 卷积神经网络 机器学习 图形 推论 深度学习 理论计算机科学 社会科学 社会学
作者
Wentai Hou,Chengxuan Lin,Lequan Yu,Jing Qin,Rongshan Yu,Liansheng Wang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (8): 2462-2473 被引量:51
标识
DOI:10.1109/tmi.2023.3253760
摘要

Cancer survival prediction requires exploiting related multimodal information (e.g., pathological, clinical and genomic features, etc.) and it is even more challenging in clinical practices due to the incompleteness of patient's multimodal data. Furthermore, existing methods lack sufficient intra- and inter-modal interactions, and suffer from significant performance degradation caused by missing modalities. This manuscript proposes a novel hybrid graph convolutional network, entitled HGCN, which is equipped with an online masked autoencoder paradigm for robust multimodal cancer survival prediction. Particularly, we pioneer modeling the patient's multimodal data into flexible and interpretable multimodal graphs with modality-specific preprocessing. HGCN integrates the advantages of graph convolutional networks (GCNs) and a hypergraph convolutional network (HCN) through node message passing and a hyperedge mixing mechanism to facilitate intra-modal and inter-modal interactions between multimodal graphs. With HGCN, the potential for multimodal data to create more reliable predictions of patient's survival risk is dramatically increased compared to prior methods. Most importantly, to compensate for missing patient modalities in clinical scenarios, we incorporated an online masked autoencoder paradigm into HGCN, which can effectively capture intrinsic dependence between modalities and seamlessly generate missing hyperedges for model inference. Extensive experiments and analysis on six cancer cohorts from TCGA show that our method significantly outperforms the state-of-the-arts in both complete and missing modal settings. Our codes are made available at https://github.com/lin-lcx/HGCN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助威武好吐司采纳,获得10
刚刚
ZHY2023发布了新的文献求助10
刚刚
麻花发布了新的文献求助10
1秒前
1秒前
陈糯米发布了新的文献求助10
1秒前
彭于晏应助hhh采纳,获得10
2秒前
何梓桐发布了新的文献求助10
2秒前
nanjiren完成签到,获得积分10
2秒前
查查完成签到,获得积分10
2秒前
2秒前
善学以致用应助阿婧采纳,获得10
3秒前
布洛芬完成签到,获得积分10
3秒前
烟花应助liang采纳,获得10
3秒前
菜园子完成签到,获得积分10
3秒前
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
Aminoacid发布了新的文献求助10
4秒前
4秒前
4秒前
bluechen800205完成签到,获得积分10
4秒前
4秒前
C_完成签到,获得积分10
5秒前
刘柳完成签到 ,获得积分10
6秒前
酷酷宛应助把荔枝摆中间采纳,获得10
6秒前
rrr发布了新的文献求助20
6秒前
6秒前
小尹完成签到,获得积分10
6秒前
谈舒怡完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
8秒前
李健的粉丝团团长应助moon采纳,获得30
8秒前
汪宇发布了新的文献求助10
8秒前
闪电先生发布了新的文献求助10
8秒前
8秒前
Pothos应助TRY采纳,获得10
8秒前
白星完成签到,获得积分10
8秒前
lalala应助TRY采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5672558
求助须知:如何正确求助?哪些是违规求助? 4926939
关于积分的说明 15141048
捐赠科研通 4831647
什么是DOI,文献DOI怎么找? 2587631
邀请新用户注册赠送积分活动 1541437
关于科研通互助平台的介绍 1499705