Hybrid Graph Convolutional Network With Online Masked Autoencoder for Robust Multimodal Cancer Survival Prediction

计算机科学 自编码 人工智能 模式 卷积神经网络 机器学习 图形 推论 深度学习 理论计算机科学 社会科学 社会学
作者
Wentai Hou,Chengxuan Lin,Lequan Yu,Jing Qin,Rongshan Yu,Liansheng Wang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (8): 2462-2473 被引量:18
标识
DOI:10.1109/tmi.2023.3253760
摘要

Cancer survival prediction requires exploiting related multimodal information (e.g., pathological, clinical and genomic features, etc.) and it is even more challenging in clinical practices due to the incompleteness of patient's multimodal data. Furthermore, existing methods lack sufficient intra- and inter-modal interactions, and suffer from significant performance degradation caused by missing modalities. This manuscript proposes a novel hybrid graph convolutional network, entitled HGCN, which is equipped with an online masked autoencoder paradigm for robust multimodal cancer survival prediction. Particularly, we pioneer modeling the patient's multimodal data into flexible and interpretable multimodal graphs with modality-specific preprocessing. HGCN integrates the advantages of graph convolutional networks (GCNs) and a hypergraph convolutional network (HCN) through node message passing and a hyperedge mixing mechanism to facilitate intra-modal and inter-modal interactions between multimodal graphs. With HGCN, the potential for multimodal data to create more reliable predictions of patient's survival risk is dramatically increased compared to prior methods. Most importantly, to compensate for missing patient modalities in clinical scenarios, we incorporated an online masked autoencoder paradigm into HGCN, which can effectively capture intrinsic dependence between modalities and seamlessly generate missing hyperedges for model inference. Extensive experiments and analysis on six cancer cohorts from TCGA show that our method significantly outperforms the state-of-the-arts in both complete and missing modal settings. Our codes are made available at https://github.com/lin-lcx/HGCN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Akim应助GOODYUE采纳,获得10
1秒前
大模型应助JSJ采纳,获得10
2秒前
上官若男应助YP采纳,获得10
3秒前
3秒前
4秒前
humorlife完成签到,获得积分10
4秒前
刚刚好发布了新的文献求助10
4秒前
糖葫芦发布了新的文献求助10
5秒前
orixero应助科研通管家采纳,获得10
5秒前
顺心浩阑应助科研通管家采纳,获得20
5秒前
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
5秒前
6秒前
和谐的冬莲完成签到 ,获得积分10
6秒前
我不爱池鱼应助77采纳,获得10
6秒前
7秒前
lulull完成签到,获得积分10
7秒前
红芍完成签到,获得积分10
7秒前
8秒前
xiyin完成签到,获得积分10
8秒前
莫名发布了新的文献求助10
9秒前
492754592发布了新的文献求助10
9秒前
9秒前
沉鱼完成签到,获得积分10
10秒前
10秒前
脑洞疼应助yqwang采纳,获得10
10秒前
江知之完成签到 ,获得积分0
11秒前
大男完成签到,获得积分10
12秒前
xiyin发布了新的文献求助10
12秒前
13秒前
13秒前
13秒前
14秒前
顾矜应助酷炫小馒头采纳,获得10
15秒前
iCloud完成签到,获得积分10
15秒前
15秒前
小白发布了新的文献求助30
16秒前
16秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789298
求助须知:如何正确求助?哪些是违规求助? 3334334
关于积分的说明 10269281
捐赠科研通 3050758
什么是DOI,文献DOI怎么找? 1674155
邀请新用户注册赠送积分活动 802507
科研通“疑难数据库(出版商)”最低求助积分说明 760693