亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

WiTransformer: A Novel Robust Gesture Recognition Sensing Model with WiFi

计算机科学 编码器 变压器 稳健性(进化) 人工智能 模式识别(心理学) 语音识别 计算机视觉 工程类 生物化学 基因 操作系统 电气工程 电压 化学
作者
Mingze Yang,Hai Zhu,Runzhe Zhu,Fei Wu,Ling Yin,Yuncheng Yang
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:23 (5): 2612-2612 被引量:4
标识
DOI:10.3390/s23052612
摘要

The past decade has demonstrated the potential of human activity recognition (HAR) with WiFi signals owing to non-invasiveness and ubiquity. Previous research has largely concentrated on enhancing precision through sophisticated models. However, the complexity of recognition tasks has been largely neglected. Thus, the performance of the HAR system is markedly diminished when tasked with increasing complexities, such as a larger classification number, the confusion of similar actions, and signal distortion To address this issue, we eliminated conventional convolutional and recurrent backbones and proposed WiTransformer, a novel tactic based on pure Transformers. Nevertheless, Transformer-like models are typically suited to large-scale datasets as pretraining models, according to the experience of the Vision Transformer. Therefore, we adopted the Body-coordinate Velocity Profile, a cross-domain WiFi signal feature derived from the channel state information, to reduce the threshold of the Transformers. Based on this, we propose two modified transformer architectures, united spatiotemporal Transformer (UST) and separated spatiotemporal Transformer (SST) to realize WiFi-based human gesture recognition models with task robustness. SST intuitively extracts spatial and temporal data features using two encoders, respectively. By contrast, UST can extract the same three-dimensional features with only a one-dimensional encoder, owing to its well-designed structure. We evaluated SST and UST on four designed task datasets (TDSs) with varying task complexities. The experimental results demonstrate that UST has achieved recognition accuracy of 86.16% on the most complex task dataset TDSs-22, outperforming the other popular backbones. Simultaneously, the accuracy decreases by at most 3.18% when the task complexity increases from TDSs-6 to TDSs-22, which is 0.14-0.2 times that of others. However, as predicted and analyzed, SST fails because of excessive lack of inductive bias and the limited scale of the training data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cookie完成签到,获得积分10
24秒前
淡淡菠萝完成签到 ,获得积分10
26秒前
不想改格式了完成签到,获得积分10
29秒前
39秒前
cc发布了新的文献求助10
46秒前
zhengxu完成签到,获得积分20
48秒前
Dasein完成签到 ,获得积分10
50秒前
科研通AI5应助cookie采纳,获得10
51秒前
51秒前
布丁完成签到 ,获得积分10
55秒前
lisaltp发布了新的文献求助10
56秒前
1分钟前
Ava应助二三采纳,获得10
1分钟前
在水一方应助cc采纳,获得10
1分钟前
1分钟前
dahai发布了新的文献求助10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
SciGPT应助科研通管家采纳,获得10
1分钟前
FashionBoy应助科研通管家采纳,获得10
1分钟前
shimhjy应助科研通管家采纳,获得20
1分钟前
1分钟前
敏宝小仙女的狗完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
二三发布了新的文献求助10
1分钟前
cc发布了新的文献求助10
1分钟前
lisaltp完成签到,获得积分10
1分钟前
redamancy完成签到 ,获得积分10
1分钟前
1分钟前
不能随便完成签到,获得积分10
1分钟前
平凡之路发布了新的文献求助10
1分钟前
科研通AI5应助平凡之路采纳,获得10
1分钟前
2分钟前
konosuba完成签到,获得积分0
2分钟前
LL来了完成签到 ,获得积分10
2分钟前
毓雅完成签到,获得积分10
2分钟前
2分钟前
欢喜海完成签到 ,获得积分10
2分钟前
2分钟前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3807998
求助须知:如何正确求助?哪些是违规求助? 3352680
关于积分的说明 10359930
捐赠科研通 3068677
什么是DOI,文献DOI怎么找? 1685216
邀请新用户注册赠送积分活动 810332
科研通“疑难数据库(出版商)”最低求助积分说明 766022