Interfacial modification to anomalously facilitate thermal transport through cathode-separator composite in lithium-ion batteries

相间 单层 材料科学 阴极 分离器(采油) 分子 化学工程 复合数 纳米技术 纳米复合材料 化学 化学物理 复合材料 有机化学 物理化学 物理 工程类 热力学 遗传学 生物
作者
Jinlong He,Weikang Xian,Lei Tao,Patrick M. Corrigan,Ying Liu
出处
期刊:Applied Surface Science [Elsevier]
卷期号:606: 155010-155010 被引量:2
标识
DOI:10.1016/j.apsusc.2022.155010
摘要

Effective thermal management is the key to ensuring lithium-ion batteries (LIBs)’ lifetime and performance. However, the high thermal resistance across the cathode-separator interphase considerably limits the fast heat transfer. Adopting the self-assembled monolayers (SAMs) approach, various organic molecules were selected as the heat controllers to modulate the interfacial thermal conductance (ITC) between the cathode, lithium cobalt oxide (LCO), and the separator, polyethylene (PE). Silane-based SAMs molecules with different groups, including –NH2, –SH, and –CH3, were assembled into the LCO-PE composite’s interphase. Through molecular dynamics (MD) simulations, our results demonstrate SAMs molecules-decorated LCO-PE nanocomposites give a notably improved interfacial heat transfer but are of different magnitude. Such difference mainly results from the different non-bonded interactions and compatibility between SAMs molecules and PE. Of the three SAMs molecules, the assembled 3-aminopropyl trimethoxysilane (APTMS) featuring –NH2 groups improves the ITC the most, about 303.29% in comparison with the pristine interface. Furthermore, these findings help elucidate the underlying mechanisms of how SAMs molecules improve heat transfer across the LCO-PE interphase. Specifically, such enhancement is greatly attributed to the unique SAMs molecules, which build the new heat transfer pathways between LCO and PE, straighten SAMs molecules’ morphology, remove the discontinuities in the temperature field, develop the strong non-bonded interactions between SAMs molecules and PE, and strengthen the coupling vibration of two materials. These investigations provide a new perspective for designing composite’s interphase to mediate the heat transfer and achieve more effective thermal management across the interphase.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Llllllxxxxxxx完成签到,获得积分10
刚刚
1秒前
dan发布了新的文献求助10
1秒前
越努力,越幸运完成签到,获得积分10
2秒前
樊不乐发布了新的文献求助10
2秒前
3秒前
DullElm完成签到,获得积分10
3秒前
Teresa完成签到 ,获得积分10
3秒前
乐乐应助wyc采纳,获得10
4秒前
4秒前
聚乙烯醇完成签到,获得积分10
5秒前
乂氼完成签到,获得积分10
6秒前
给钱谢谢完成签到 ,获得积分10
6秒前
springlover完成签到,获得积分10
6秒前
orixero应助是玥玥啊采纳,获得10
7秒前
廉不可完成签到,获得积分10
7秒前
7秒前
好生衬托的少年完成签到,获得积分10
8秒前
9秒前
11秒前
直率的犀牛完成签到,获得积分10
11秒前
luoxu发布了新的文献求助10
11秒前
深海之镜发布了新的文献求助10
11秒前
wh发布了新的文献求助10
12秒前
晨芒完成签到,获得积分10
12秒前
CC发布了新的文献求助10
12秒前
闪闪的斑马完成签到,获得积分10
13秒前
shl完成签到,获得积分10
13秒前
搜集达人应助樊不乐采纳,获得10
14秒前
兔兔酱完成签到,获得积分10
14秒前
14秒前
飘零枫叶完成签到,获得积分0
15秒前
小陈发布了新的文献求助10
15秒前
ERICLEE82完成签到,获得积分10
15秒前
lalala应助LRZ采纳,获得10
15秒前
今后应助chao采纳,获得10
16秒前
ZR14124完成签到 ,获得积分10
16秒前
ji完成签到 ,获得积分10
16秒前
JunoDrain完成签到,获得积分10
17秒前
从容夏山发布了新的文献求助10
17秒前
高分求助中
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 1000
Yuwu Song, Biographical Dictionary of the People's Republic of China 800
Multifunctional Agriculture, A New Paradigm for European Agriculture and Rural Development 600
Division and square root. Digit-recurrence algorithms and implementations 500
Hemerologies of Assyrian and Babylonian Scholars 500
Bernd Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
Chemistry and biology of antigen presentation in celiac sprue 430
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2490456
求助须知:如何正确求助?哪些是违规求助? 2149634
关于积分的说明 5487697
捐赠科研通 1870677
什么是DOI,文献DOI怎么找? 929923
版权声明 563339
科研通“疑难数据库(出版商)”最低求助积分说明 497316