TPE-CatBoost: An adaptive model for soil moisture spatial estimation in the main maize-producing areas of China with multiple environment covariates

协变量 环境科学 估计 估计员 土壤科学 空间变异性 含水量 农业工程 统计 数学 岩土工程 工程类 经济 管理
作者
Jingxin Yu,Wengang Zheng,Linlin Xu,Fanyu Meng,Jing Li,Lili Zhangzhong
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:613: 128465-128465 被引量:36
标识
DOI:10.1016/j.jhydrol.2022.128465
摘要

• An adaptive TPE-CatBoost method for soil moisture spatial estimation was proposed. • Optimal accuracy was obtained by accounting for soil, meteorological, and location covariates. • The AI algorithm performed better than the traditional GIS spatial interpolation algorithm. • The proposed model was found to be susceptible to environmental changes of covariates. Maize is one of the major crops in China. The soil water content (SWC) in the root zone of maize is a critical indicator that guides agricultural production decisions and can affect national food security. However, a daily-scale, high-precision, spatial estimation method for SWC in China's main maize-producing areas has not been well researched. Therefore, we developed a spatial estimation model for SWC with a dynamic parameter optimization mechanism termed TPE-CatBoost. It combines the CatBoost algorithm as the core fitting framework with the efficient tree-structured Parzen estimator (TPE) algorithm to achieve a dynamic hyperparameter optimization based on covariate characteristics. Daily measured multi-depth SWC data at 175 stations from 2015 to 2019 were used as the reference truth, and 18 items of information, including soil physical and chemical properties, daily meteorological conditions, and spatial location information, were obtained from Google Earth Engine and considered as covariates. Model training was performed using the leave-one-out cross-validation method. Estimation error differences were investigated in four dimensions: time, space, depth, and the model. Our key results are as follows: (1) by combining all covariates, the highest estimation accuracy could be obtained at any soil depth, with a mean absolute error (MAE) within [6.06%, 6.94%]. The top five mean importance scores of covariates were latitude, soil pH, bulk density, DEM, and dewpoint temperature; (2) the MAE for all years remained within [4.66%, 9.34%], with higher errors in June; (3) the MAE for each province remained within [3.5%, 8.29%], with errors decreasing from north to south; and (4) compared with GIS-based spatial interpolation methods (inverse distance weighted, ordinary Kriging, and empirical Bayesian Kriging [EBK]), artificial intelligence (AI) algorithms combining environmental covariates (XGBoost, CatBoost, and TPE-CatBoost) could achieve better estimation accuracy. In particular, TPE-CatBoost performed well, with an improvement of 15.1% over EBK. We also demonstrated that TPE-CatBoost was susceptible to changes in the covariate gain capacity under extreme weather conditions using the SHapley Additive exPlanation (SHAP) algorithm. Visual mapping of single-day spatial estimation results in ArcGIS showed high consistency in distribution trends compared with the Soil Moisture Active Passive (SMAP) product.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嗯哼发布了新的文献求助10
1秒前
Glowing完成签到,获得积分10
2秒前
馒头酶发布了新的文献求助10
4秒前
5秒前
逗逗完成签到,获得积分10
6秒前
6秒前
YJH完成签到,获得积分10
7秒前
无花果应助嗯哼采纳,获得10
8秒前
GU完成签到,获得积分10
8秒前
我要发核心完成签到 ,获得积分10
8秒前
9秒前
周宇飞完成签到,获得积分10
11秒前
mycishere发布了新的文献求助10
11秒前
喏晨发布了新的文献求助10
13秒前
13秒前
叶赛文应助番茄采纳,获得60
14秒前
科目三应助麒麟采纳,获得10
16秒前
ZZRR完成签到,获得积分10
16秒前
18秒前
曾泳钧完成签到,获得积分10
21秒前
栗子芸完成签到,获得积分10
24秒前
土里刨星星的鱼完成签到,获得积分20
27秒前
27秒前
眯眯眼的世界完成签到,获得积分10
29秒前
小二郎应助hzw采纳,获得10
29秒前
竹马子发布了新的文献求助10
33秒前
35秒前
直率的花生完成签到,获得积分20
37秒前
39秒前
昔时旧日完成签到,获得积分10
39秒前
45秒前
科研通AI5应助喏晨采纳,获得10
45秒前
Adzuki0812完成签到,获得积分10
46秒前
46秒前
顾矜应助mia采纳,获得10
46秒前
Maxine完成签到 ,获得积分10
49秒前
脑洞疼应助竹马子采纳,获得10
49秒前
华仔应助孤独的寻双采纳,获得10
51秒前
tRNA发布了新的文献求助10
54秒前
55秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781475
求助须知:如何正确求助?哪些是违规求助? 3326986
关于积分的说明 10229195
捐赠科研通 3041927
什么是DOI,文献DOI怎么找? 1669688
邀请新用户注册赠送积分活动 799249
科研通“疑难数据库(出版商)”最低求助积分说明 758757