Double redox-active quinone molecules functionalized a three-dimensional graphene network for high-performance supercapacitor

石墨烯 假电容 超级电容器 材料科学 氧化还原 对苯二酚 纳米技术 电容 电极 化学工程 化学 有机化学 工程类 冶金 物理化学
作者
Yuhang Jia,Shaopei Yang,Fuyao Huang,Daping Hu,Runhai Wu,Chenliang Gong,Xue Wang,Yuman Dong,Pengcheng Du
出处
期刊:Journal of energy storage [Elsevier BV]
卷期号:71: 108124-108124 被引量:6
标识
DOI:10.1016/j.est.2023.108124
摘要

As a well-known two-dimensional material, graphene is widely used as an electrode material in energy storage devices. However, the tendency of the agglomeration or restacking of graphene sheets limit the properties. To overcome this issue, redox-active molecules can be introduced that inhibit the stacking of graphene sheets and impart excellent pseudocapacitance properties. In this study, we design a three-dimensional (3D) graphene network anchored with redox-active 2,5-(di-p-phenylenediamine)-1,4-benzoquinone (DBP) and hydroquinone (HQ) (DFGN) using a facile one-step hydrothermal process. The covalent binding and absorption between redox-active molecules and graphene sheets reduce restacking and enable promising pseudocapacitance through reversible faradic reactions of quinone and aniline structures. Among all the samples, DFGN-1 shows the best specific capacitance (667.3 F/g at 1 A/g), high-rate capability (89.2 % even up to 50 A/g), and good cycling stability. Furthermore, DFGN-1 is also employed as an electrode material to construct flexible solid-state supercapacitors (FSSCs), which exhibit great specific capacitance (441 F/g at 0.5 A/g), excellent cycling stability (90.6 % after 10,000 cycles at 10 A/g) and high-energy density of 9.29 Wh/kg at a power density of 96.22 W/kg. Interestingly, FSSCs also display great mechanical flexibility in bending and twisting states and extraordinary mechanical durability even after being bent 5000 times. Overall, double redox-active quinone molecules functionalized 3D graphene network provides a novel tactic to construct promising potential electrodes in energy storage applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
leid完成签到 ,获得积分10
3秒前
3秒前
yj91完成签到,获得积分10
7秒前
9秒前
钙钛矿光电突触完成签到,获得积分10
10秒前
sonny发布了新的文献求助10
14秒前
Ava应助Nature_PhD采纳,获得10
15秒前
小马甲应助科研通管家采纳,获得10
15秒前
15秒前
Orange应助科研通管家采纳,获得10
15秒前
SYLH应助科研通管家采纳,获得10
15秒前
完美世界应助科研通管家采纳,获得10
15秒前
领导范儿应助科研通管家采纳,获得10
15秒前
斯文败类应助科研通管家采纳,获得30
16秒前
小马甲应助科研通管家采纳,获得30
16秒前
SYLH应助科研通管家采纳,获得10
16秒前
星辰大海应助科研通管家采纳,获得10
16秒前
领导范儿应助科研通管家采纳,获得10
16秒前
李健应助科研通管家采纳,获得10
16秒前
Ekko完成签到,获得积分10
18秒前
19秒前
23秒前
24秒前
YY完成签到 ,获得积分10
25秒前
星黛露发布了新的文献求助10
27秒前
hahhha发布了新的文献求助10
28秒前
阿巴阿巴发布了新的文献求助10
29秒前
852应助花花采纳,获得10
33秒前
专注的筝完成签到 ,获得积分10
38秒前
39秒前
在水一方应助星黛露采纳,获得10
40秒前
43秒前
摸鱼仙人完成签到,获得积分10
56秒前
R喵喵完成签到 ,获得积分10
1分钟前
1分钟前
苹果老三完成签到,获得积分10
1分钟前
1分钟前
ding应助Xingkun_li采纳,获得10
1分钟前
JOKY完成签到,获得积分10
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776474
求助须知:如何正确求助?哪些是违规求助? 3321968
关于积分的说明 10208252
捐赠科研通 3037252
什么是DOI,文献DOI怎么找? 1666613
邀请新用户注册赠送积分活动 797594
科研通“疑难数据库(出版商)”最低求助积分说明 757872