Prediction of Clinical Trials Outcomes Based on Target Choice and Clinical Trial Design with Multi‐Modal Artificial Intelligence

临床试验 人工智能 机器学习 计算机科学 杠杆(统计) 文件夹 数据挖掘 医学 内科学 金融经济学 经济
作者
Alex Aliper,Roman Kudrin,Daniil Polykovskiy,Petrina Kamya,Elena Tutubalina,Shan Chen,Feng Ren,Alex Zhavoronkov
出处
期刊:Clinical Pharmacology & Therapeutics [Wiley]
卷期号:114 (5): 972-980 被引量:59
标识
DOI:10.1002/cpt.3008
摘要

Drug discovery and development is a notoriously risky process with high failure rates at every stage, including disease modeling, target discovery, hit discovery, lead optimization, preclinical development, human safety, and efficacy studies. Accurate prediction of clinical trial outcomes may help significantly improve the efficiency of this process by prioritizing therapeutic programs that are more likely to succeed in clinical trials and ultimately benefit patients. Here, we describe inClinico, a transformer‐based artificial intelligence software platform designed to predict the outcome of phase II clinical trials. The platform combines an ensemble of clinical trial outcome prediction engines that leverage generative artificial intelligence and multimodal data, including omics, text, clinical trial design, and small molecule properties. inClinico was validated in retrospective, quasi‐prospective, and prospective validation studies internally and with pharmaceutical companies and financial institutions. The platform achieved 0.88 receiver operating characteristic area under the curve in predicting the phase II to phase III transition on a quasi‐prospective validation dataset. The first prospective predictions were made and placed on date‐stamped preprint servers in 2016. To validate our model in a real‐world setting, we published forecasted outcomes for several phase II clinical trials achieving 79% accuracy for the trials that have read out. We also present an investment application of inClinico using date stamped virtual trading portfolio demonstrating 35% 9‐month return on investment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
落后的夜阑完成签到,获得积分10
1秒前
zhouzhou完成签到,获得积分10
1秒前
1秒前
讨厌所有人完成签到,获得积分10
2秒前
lihuihui233完成签到,获得积分10
2秒前
nanan完成签到,获得积分10
2秒前
CodeCraft应助我是AY采纳,获得10
2秒前
虚幻的白秋完成签到,获得积分10
3秒前
英姑应助天真的红酒采纳,获得10
3秒前
可靠的纸鹤完成签到,获得积分10
3秒前
虚心念桃完成签到,获得积分10
3秒前
4秒前
长弓诘完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
xiaoyezi123发布了新的文献求助10
5秒前
平常的不评完成签到,获得积分10
5秒前
6秒前
火星上问柳完成签到,获得积分10
6秒前
6秒前
占臻完成签到 ,获得积分10
7秒前
7秒前
misa完成签到 ,获得积分10
8秒前
初见完成签到,获得积分10
8秒前
zhang完成签到,获得积分10
8秒前
wwwq发布了新的文献求助10
9秒前
帅气男孩完成签到,获得积分10
9秒前
后知后觉完成签到,获得积分10
9秒前
10秒前
curry应助搞怪人雄采纳,获得10
11秒前
墨染完成签到 ,获得积分10
11秒前
黑糖完成签到,获得积分10
11秒前
追逐梦想的打工人完成签到,获得积分10
11秒前
小白完成签到,获得积分10
11秒前
11秒前
sun发布了新的文献求助10
12秒前
不信人间有白头完成签到 ,获得积分0
12秒前
无极微光应助LM采纳,获得20
13秒前
潘杰完成签到,获得积分10
13秒前
溜溜蛋完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5765314
求助须知:如何正确求助?哪些是违规求助? 5560332
关于积分的说明 15408304
捐赠科研通 4900070
什么是DOI,文献DOI怎么找? 2636173
邀请新用户注册赠送积分活动 1584389
关于科研通互助平台的介绍 1539646