Ensemble Learning for Disease Prediction: A Review

集成学习 Boosting(机器学习) 机器学习 计算机科学 人工智能 集合预报 堆积 分类器(UML) 疾病 随机森林 医学 病理 物理 核磁共振
作者
Palak Mahajan,Shahadat Uddin,Farshid Hajati,Mohammad Ali Moni
出处
期刊:Healthcare [MDPI AG]
卷期号:11 (12): 1808-1808 被引量:35
标识
DOI:10.3390/healthcare11121808
摘要

Machine learning models are used to create and enhance various disease prediction frameworks. Ensemble learning is a machine learning technique that combines multiple classifiers to improve performance by making more accurate predictions than a single classifier. Although numerous studies have employed ensemble approaches for disease prediction, there is a lack of thorough assessment of commonly used ensemble approaches against highly researched diseases. Consequently, this study aims to identify significant trends in the performance accuracies of ensemble techniques (i.e., bagging, boosting, stacking, and voting) against five hugely researched diseases (i.e., diabetes, skin disease, kidney disease, liver disease, and heart conditions). Using a well-defined search strategy, we first identified 45 articles from the current literature that applied two or more of the four ensemble approaches to any of these five diseases and were published in 2016-2023. Although stacking has been used the fewest number of times (23) compared with bagging (41) and boosting (37), it showed the most accurate performance the most times (19 out of 23). The voting approach is the second-best ensemble approach, as revealed in this review. Stacking always revealed the most accurate performance in the reviewed articles for skin disease and diabetes. Bagging demonstrated the best performance for kidney disease (five out of six times) and boosting for liver and diabetes (four out of six times). The results show that stacking has demonstrated greater accuracy in disease prediction than the other three candidate algorithms. Our study also demonstrates variability in the perceived performance of different ensemble approaches against frequently used disease datasets. The findings of this work will assist researchers in better understanding current trends and hotspots in disease prediction models that employ ensemble learning, as well as in determining a more suitable ensemble model for predictive disease analytics. This article also discusses variability in the perceived performance of different ensemble approaches against frequently used disease datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
别说话发布了新的文献求助10
1秒前
4秒前
Fi9zero完成签到,获得积分10
7秒前
Woo_SH发布了新的文献求助10
7秒前
shuide发布了新的文献求助10
8秒前
酷酷的数据线完成签到,获得积分10
9秒前
酷雅的小跟班完成签到,获得积分10
10秒前
Hosea完成签到 ,获得积分10
12秒前
风中的天空完成签到,获得积分10
14秒前
15秒前
青春奇谈完成签到,获得积分10
20秒前
21秒前
24秒前
青春奇谈发布了新的文献求助10
25秒前
27秒前
吴宵完成签到,获得积分0
30秒前
30秒前
黄汉良完成签到,获得积分10
31秒前
Owen应助zhscu采纳,获得10
32秒前
田様应助我要做科研狗采纳,获得10
33秒前
无语的问雁完成签到,获得积分10
35秒前
36秒前
37秒前
彭于晏应助别说话采纳,获得30
38秒前
CipherSage应助haoran采纳,获得10
39秒前
协和_子鱼发布了新的文献求助10
41秒前
41秒前
42秒前
42秒前
花遇和风完成签到 ,获得积分10
43秒前
Focus_BG完成签到,获得积分10
44秒前
mengjianfen发布了新的文献求助10
46秒前
46秒前
zhscu发布了新的文献求助10
47秒前
大模型应助猪猪hero采纳,获得10
47秒前
BowieHuang应助nono采纳,获得10
50秒前
51秒前
51秒前
54秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5558025
求助须知:如何正确求助?哪些是违规求助? 4642970
关于积分的说明 14670108
捐赠科研通 4584465
什么是DOI,文献DOI怎么找? 2514893
邀请新用户注册赠送积分活动 1489009
关于科研通互助平台的介绍 1459631