Branch Aggregation Attention Network for Robotic Surgical Instrument Segmentation

计算机科学 分割 人工智能 手术器械 图像分割 计算机视觉 医学 放射科
作者
Wenting Shen,Yaonan Wang,Min Liu,Jiazheng Wang,Renjie Ding,Zhe Zhang,Erik Meijering
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (11): 3408-3419 被引量:19
标识
DOI:10.1109/tmi.2023.3288127
摘要

Surgical instrument segmentation is of great significance to robot-assisted surgery, but the noise caused by reflection, water mist, and motion blur during the surgery as well as the different forms of surgical instruments would greatly increase the difficulty of precise segmentation. A novel method called Branch Aggregation Attention network (BAANet) is proposed to address these challenges, which adopts a lightweight encoder and two designed modules, named Branch Balance Aggregation module (BBA) and Block Attention Fusion module (BAF), for efficient feature localization and denoising. By introducing the unique BBA module, features from multiple branches are balanced and optimized through a combination of addition and multiplication to complement strengths and effectively suppress noise. Furthermore, to fully integrate the contextual information and capture the region of interest, the BAF module is proposed in the decoder, which receives adjacent feature maps from the BBA module and localizes the surgical instruments from both global and local perspectives by utilizing a dual branch attention mechanism. According to the experimental results, the proposed method has the advantage of being lightweight while outperforming the second-best method by 4.03%, 1.53%, and 1.34% in mIoU scores on three challenging surgical instrument datasets, respectively, compared to the existing state-of-the-art methods. Code is available at https://github.com/SWT-1014/BAANet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助Zehn采纳,获得10
刚刚
1秒前
朴素采文发布了新的文献求助10
1秒前
栗子发布了新的文献求助20
1秒前
魔法的水管关注了科研通微信公众号
2秒前
Megumi完成签到,获得积分10
2秒前
Ava应助益笙鸿老板采纳,获得10
2秒前
善学以致用应助三度和弦采纳,获得10
2秒前
mll发布了新的文献求助10
4秒前
4秒前
科研通AI6应助苏su采纳,获得10
5秒前
6秒前
完美世界应助呆萌的忆山采纳,获得10
7秒前
7秒前
Echo完成签到,获得积分10
7秒前
我是一块小饼干完成签到 ,获得积分20
8秒前
KD发布了新的文献求助10
8秒前
9秒前
没名字发布了新的文献求助10
12秒前
小蘑菇应助Snoopy采纳,获得10
12秒前
w_完成签到,获得积分10
12秒前
CodeCraft应助KD采纳,获得10
13秒前
Bingtao_Lian发布了新的文献求助10
13秒前
从容飞烟发布了新的文献求助30
15秒前
CipherSage应助云襄采纳,获得10
15秒前
16秒前
散作满河星完成签到,获得积分10
16秒前
Akim应助Xxxxzzz采纳,获得10
17秒前
sihui完成签到,获得积分10
18秒前
19秒前
236完成签到,获得积分10
20秒前
21秒前
Bink完成签到,获得积分10
21秒前
22秒前
夜猫完成签到,获得积分10
23秒前
114koi完成签到,获得积分10
24秒前
24秒前
25秒前
领导范儿应助Bink采纳,获得10
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5287680
求助须知:如何正确求助?哪些是违规求助? 4439796
关于积分的说明 13823033
捐赠科研通 4321964
什么是DOI,文献DOI怎么找? 2372222
邀请新用户注册赠送积分活动 1367807
关于科研通互助平台的介绍 1331322