META-Unet: Multi-Scale Efficient Transformer Attention Unet for Fast and High-Accuracy Polyp Segmentation

分割 计算机科学 人工智能 编码器 图像分割 掷骰子 模式识别(心理学) 变压器 计算机视觉 工程类 电压 数学 几何学 操作系统 电气工程
作者
Huisi Wu,Zebin Zhao,Zhaoze Wang
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:21 (3): 4117-4128 被引量:37
标识
DOI:10.1109/tase.2023.3292373
摘要

Polyp segmentation plays an important role in preventing Colorectal cancer. Although Vision Transformer has been widely introduced in medical image segmentation to compensate the limitations of traditional CNN in modeling global context, its shortcomings in learning the fine-detailed features and the heavy computation cost also hinder its application in challenging polyp segmentation due to the various shapes and sizes of polyps, the low-intensity contrast between polyps and surrounding tissues, and the inherent real-time requirement. In this paper, we propose a multi-scale efficient transformer attention (META) mechanism for fast and high-accuracy polyp segmentation, where efficient transformer blocks are employed to generate multi-scale element-wise attentions for adaptive feature fusion in the famous U-shape encoder-decoder architecture. Specifically, our META mechanism includes two branches to capture multi-scale long-term dependencies, which are implemented via two efficient transformer blocks with different resolutions. The local branch is used to capture a relatively smaller transform attention under a relatively lower resolution, while the global branch is used to capture high-resolution transform attention. The final poly segmentation results are progressively integrated based on the META mechanism in each layer of the decoder. Extensive experiments are conducted on four polyp segmentation datasets (CVC-ClinicDB, Endoscenestill, Kvasir-SEG and ETIS-Larib) to demonstrate its advantages, consistently outperforming different competitors. While using ResNet34 as backbones, it can achieve 85.78% IoU and 92.03% Dice, 88.99% IoU and 93.85% Dice, 86.42% IoU and 91.86% Dice respectively in CVC-ClinicDB, Endoscenestill, and Kvasir-SEG, and a speed of 98 FPS at the input size of $3 \times 512 \times 512$ on a NVIDIA GeForce RTX 3090 card. The code is available at https://github.com/szuzzb/META-Unet. Note to Practitioners —Automatic polyp segmentation is a crucial step of polyp recognition and diagnostic of colonoscopy, which usually require both high-accuracy and real-time performance. This article proposes a novel polyp segmentation method, namely META-Unet, by modeling multi-scale attention maps effectively and efficiently based on a novel multi-scale efficient transformer attention (META) mechanism, for faster and higher-accuracy polyp segmentation. We evaluate our META-Unet on four public polyp image segmentation datasets (CVC-ClinicDB, Endoscenestill, Kvasir-SEG and ETIS-Larib). Comprehensive experimental results validate its outstanding performance with a better balance in both accuracy and inference speed. The proposed META mechanism is potentially to be embedded in various deep learning frameworks and facilitates more computer-aided applications in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李思超发布了新的文献求助240
刚刚
fengxj完成签到 ,获得积分10
1秒前
2秒前
科研通AI2S应助QR采纳,获得10
2秒前
醒醒完成签到,获得积分10
2秒前
3秒前
刘小明关注了科研通微信公众号
3秒前
smile完成签到 ,获得积分10
5秒前
Grayson发布了新的文献求助30
8秒前
8秒前
11秒前
彩色的德地完成签到,获得积分10
11秒前
11秒前
朱莉发布了新的文献求助10
16秒前
Grayson完成签到,获得积分10
19秒前
冷傲迎梦完成签到,获得积分20
20秒前
AI完成签到 ,获得积分10
22秒前
科研通AI2S应助John采纳,获得10
25秒前
阿夸完成签到,获得积分10
25秒前
上官枫完成签到 ,获得积分10
27秒前
32秒前
英俊的铭应助十先生的猫采纳,获得10
34秒前
科研通AI5应助淘宝叮咚采纳,获得30
37秒前
希望天下0贩的0应助月亮采纳,获得10
37秒前
赘婿应助汉堡上的鸽子粪采纳,获得10
37秒前
桐桐应助老宋采纳,获得10
41秒前
42秒前
朱莉完成签到,获得积分10
44秒前
SciGPT应助zimi采纳,获得10
46秒前
47秒前
无限的马里奥完成签到,获得积分10
47秒前
淡淡紫山发布了新的文献求助30
48秒前
49秒前
49秒前
49秒前
Jane发布了新的文献求助30
49秒前
49秒前
50秒前
54秒前
54秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778058
求助须知:如何正确求助?哪些是违规求助? 3323749
关于积分的说明 10215625
捐赠科研通 3038921
什么是DOI,文献DOI怎么找? 1667711
邀请新用户注册赠送积分活动 798361
科研通“疑难数据库(出版商)”最低求助积分说明 758339