Spatial Upscaling-Based Algorithm for Detection and Estimation of Hazardous Gases

危险废物 计算机科学 卷积神经网络 算法 火灾探测 人工智能 工程类 废物管理 建筑工程
作者
Sumit Srivastava,Shiv Nath Chaudhri,Navin Singh Rajput,Saeed Hamood Alsamhi,Alexey V. Shvetsov
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 17731-17738 被引量:18
标识
DOI:10.1109/access.2023.3245041
摘要

Recently, society/industry is getting smarter and sustainable through artificial intelligence-based solutions. However, this rapid advancement is also polluting our air ambience. Hence real-time detection and estimation of hazardous gases/odors in the air ambiance has become a critical need. In this paper, a convolutional neural network (CNN) based multi-element gas sensor arrays signature response analysis approach has been presented to achieve higher accuracy in detection and estimation of hazardous gases. Accordingly, the real-time gas sensor array responses are spatially upscaled and processed on the edge, using lightweight CNNs. For the verification of our hypothesis, we have used a four-element metal-oxide semi-conductor (MOS)-based thick-film gas sensor array, fabricated by our group, by using SnO 2 , ZnO, MoO, CdS materials for detection and estimation of four target hazardous gases, viz., acetone, carbon-tetrachloride, ethyl-methyl-ketone, and xylene. The four-element (2×2) raw sensor responses are first upscaled to 6×6 responses and a lightweight CNN is trained on 42 samples of 6×6 input vectors. The trained system is then tested using 16 unknown (not used during training) test samples of the considered gases/odors. All the 16 test samples are detected correctly. The Mean Squared Error (MSEs) of detection has been 1.42×10 -14 while the estimation accuracy of 2.43×10 -3 were achieved for the considered gases. Our designed system is generic in design and can be extended to other gases/odors of interest.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
WFLLL发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
2秒前
PHY发布了新的文献求助10
2秒前
flyqua完成签到,获得积分10
2秒前
耳朵儿歌发布了新的文献求助10
3秒前
张达发布了新的文献求助10
3秒前
dzy1317完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
张茜茜发布了新的文献求助10
5秒前
dddd完成签到,获得积分10
6秒前
6秒前
斯文败类应助舒适的素采纳,获得10
6秒前
Efei发布了新的文献求助10
7秒前
8秒前
8秒前
9秒前
科研1发布了新的文献求助10
9秒前
9秒前
缥缈熊猫完成签到 ,获得积分10
10秒前
阿耐迪克应助科研不通采纳,获得10
10秒前
ionicliquids发布了新的文献求助30
10秒前
周新哲发布了新的文献求助10
10秒前
11秒前
大模型应助谦让的冰真采纳,获得10
11秒前
11秒前
ziyue发布了新的文献求助10
12秒前
完美世界应助下雨的颜色采纳,获得10
12秒前
石建伟发布了新的文献求助10
13秒前
杰jj发布了新的文献求助10
14秒前
14秒前
14秒前
下雨了吗发布了新的文献求助10
14秒前
15秒前
李家新29发布了新的文献求助10
15秒前
小菜发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
Bulletin de la Societe Chimique de France 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4277792
求助须知:如何正确求助?哪些是违规求助? 3806338
关于积分的说明 11925971
捐赠科研通 3453227
什么是DOI,文献DOI怎么找? 1893860
邀请新用户注册赠送积分活动 943805
科研通“疑难数据库(出版商)”最低求助积分说明 847646