亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning detection of dust impact signals observed by the Solar Orbiter

轨道飞行器 航天器 计算机科学 太阳风 人工智能 支持向量机 卷积神经网络 遥感 物理 等离子体 天文 地质学 量子力学
作者
Andreas Kvammen,Kristoffer Wickstrøm,Samuel Kočiščák,Jakub Vaverka,Libor Nouzák,Arnaud Zaslavsky,Kristina Racković Babić,Amalie Gjelsvik,David Píša,J. Souček,Ingrid Mann
出处
期刊:Annales Geophysicae [Copernicus Publications]
卷期号:41 (1): 69-86 被引量:8
标识
DOI:10.5194/angeo-41-69-2023
摘要

Abstract. This article presents the results of automatic detection of dust impact signals observed by the Solar Orbiter – Radio and Plasma Waves instrument. A sharp and characteristic electric field signal is observed by the Radio and Plasma Waves instrument when a dust particle impacts the spacecraft at high velocity. In this way, ∼ 5–20 dust impacts are daily detected as the Solar Orbiter travels through the interplanetary medium. The dust distribution in the inner solar system is largely uncharted and statistical studies of the detected dust impacts will enhance our understanding of the role of dust in the solar system. It is however challenging to automatically detect and separate dust signals from the plural of other signal shapes for two main reasons. Firstly, since the spacecraft charging causes variable shapes of the impact signals, and secondly because electromagnetic waves (such as solitary waves) may induce resembling electric field signals. In this article, we propose a novel machine learning-based framework for detection of dust impacts. We consider two different supervised machine learning approaches: the support vector machine classifier and the convolutional neural network classifier. Furthermore, we compare the performance of the machine learning classifiers to the currently used on-board classification algorithm and analyze 2 years of Radio and Plasma Waves instrument data. Overall, we conclude that detection of dust impact signals is a suitable task for supervised machine learning techniques. The convolutional neural network achieves the highest performance with 96 % ± 1 % overall classification accuracy and 94 % ± 2 % dust detection precision, a significant improvement to the currently used on-board classifier with 85 % overall classification accuracy and 75 % dust detection precision. In addition, both the support vector machine and the convolutional neural network classifiers detect more dust particles (on average) than the on-board classification algorithm, with 16 % ± 1 % and 18 % ± 8 % detection enhancement, respectively. The proposed convolutional neural network classifier (or similar tools) should therefore be considered for post-processing of the electric field signals observed by the Solar Orbiter.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
6秒前
6秒前
所所应助DJHKFD采纳,获得10
7秒前
猜不猜不完成签到 ,获得积分10
8秒前
8秒前
9秒前
9秒前
ET发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
11秒前
zyx给zyx的求助进行了留言
11秒前
13656479046发布了新的文献求助10
11秒前
12秒前
糖歌吃瘦发布了新的文献求助10
12秒前
wyy发布了新的文献求助20
13秒前
包容如曼发布了新的文献求助10
13秒前
桐桐应助没有昵称采纳,获得10
13秒前
淡然台灯发布了新的文献求助10
15秒前
ding应助番茄牛肉粒采纳,获得10
20秒前
风华正茂完成签到,获得积分10
21秒前
李大刚完成签到 ,获得积分10
22秒前
CipherSage应助婧婧采纳,获得10
22秒前
Mtx3098520564完成签到 ,获得积分10
24秒前
24秒前
充电宝应助糖歌吃瘦采纳,获得10
31秒前
华仔应助Treasure98采纳,获得10
33秒前
36秒前
Rory完成签到 ,获得积分10
37秒前
风趣的若菱完成签到,获得积分10
43秒前
积极的夏天完成签到 ,获得积分10
45秒前
50秒前
量子星尘发布了新的文献求助10
51秒前
57秒前
渡己。发布了新的文献求助10
59秒前
1分钟前
DJHKFD发布了新的文献求助10
1分钟前
共享精神应助00111100采纳,获得10
1分钟前
lameliu完成签到,获得积分10
1分钟前
isabellae完成签到,获得积分20
1分钟前
Treasure98发布了新的文献求助10
1分钟前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Synthesis of 21-Thioalkanoic Acids of Corticosteroids 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Applied Survey Data Analysis (第三版, 2025) 850
Structural Equation Modeling of Multiple Rater Data 700
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3885703
求助须知:如何正确求助?哪些是违规求助? 3427807
关于积分的说明 10756988
捐赠科研通 3152707
什么是DOI,文献DOI怎么找? 1740539
邀请新用户注册赠送积分活动 840289
科研通“疑难数据库(出版商)”最低求助积分说明 785280