Augmented Dual-Contrastive Aggregation Learning for Unsupervised Visible-Infrared Person Re-Identification

模态(人机交互) 计算机科学 鉴定(生物学) 人工智能 透视图(图形) 特征学习 模式识别(心理学) 机器学习 植物 生物
作者
Bin Yang,Mang Ye,Jun Chen,Zesen Wu
标识
DOI:10.1145/3503161.3548198
摘要

Visible infrared person re-identification (VI-ReID) aims at searching out the corresponding infrared (visible) images from a gallery set captured by other spectrum cameras. Recent works mainly focus on supervised VI-ReID methods that require plenty of cross-modality (visible-infrared) identity labels which are more expensive than the annotations in single-modality person ReID. For the unsupervised learning visible infrared re-identification (USL-VI-ReID), the large cross-modality discrepancies lead to difficulties in generating reliable cross-modality labels and learning modality-invariant features without any annotations. To address this problem, we propose a novel Augmented Dual-Contrastive Aggregation (ADCA) learning framework. Specifically, a dual-path contrastive learning framework with two modality-specific memories is proposed to learn the intra-modality person representation. To associate positive cross-modality identities, we design a cross-modality memory aggregation module with count priority to select highly associated positive samples, and aggregate their corresponding memory features at the cluster level, ensuring that the optimization is explicitly concentrated on the modality-irrelevant perspective. Extensive experiments demonstrate that our proposed ADCA significantly outperforms existing unsupervised methods under various settings, and even surpasses some supervised counterparts, facilitating VI-ReID to real-world deployment. Code is available at https://github.com/yangbincv/ADCA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助标致初晴采纳,获得10
刚刚
Joy关闭了Joy文献求助
刚刚
1秒前
2秒前
Lucas应助qianqina采纳,获得10
2秒前
MTF完成签到 ,获得积分10
2秒前
css1997完成签到 ,获得积分10
3秒前
温暖的书竹完成签到 ,获得积分10
4秒前
yyd发布了新的文献求助10
5秒前
5秒前
swallow发布了新的文献求助10
6秒前
共享精神应助迷路的初柔采纳,获得10
6秒前
6秒前
戴维发布了新的文献求助10
6秒前
YYL完成签到,获得积分10
7秒前
hsss驳回了英姑应助
8秒前
tjcu发布了新的文献求助30
9秒前
12秒前
Iridescent完成签到 ,获得积分10
12秒前
西园寺鹿旎应助tjcu采纳,获得30
13秒前
13秒前
14秒前
twistzz完成签到 ,获得积分10
15秒前
浮游应助科研通管家采纳,获得10
15秒前
CodeCraft应助科研通管家采纳,获得10
15秒前
15秒前
迷路的初柔完成签到,获得积分10
15秒前
情怀应助科研通管家采纳,获得10
15秒前
Owen应助科研通管家采纳,获得10
15秒前
Zx_1993应助科研通管家采纳,获得10
15秒前
大模型应助科研通管家采纳,获得10
15秒前
FashionBoy应助科研通管家采纳,获得10
15秒前
爆米花应助科研通管家采纳,获得10
15秒前
传奇3应助科研通管家采纳,获得10
16秒前
16秒前
英俊的铭应助科研通管家采纳,获得10
16秒前
Zx_1993应助科研通管家采纳,获得10
16秒前
归尘应助科研通管家采纳,获得10
16秒前
乐乐应助科研通管家采纳,获得10
16秒前
丘比特应助科研通管家采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425117
求助须知:如何正确求助?哪些是违规求助? 4539252
关于积分的说明 14166344
捐赠科研通 4456403
什么是DOI,文献DOI怎么找? 2444186
邀请新用户注册赠送积分活动 1435189
关于科研通互助平台的介绍 1412553