清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

3D bioprinted microparticles: Optimizing loading efficiency using advanced DoE technique and machine learning modeling

喷嘴 乳状液 材料科学 3D打印 挤压 流变学 熔融沉积模型 微粒 纳米技术 机械工程 工艺工程 计算机科学 复合材料 化学工程 工程类
作者
Jiawei Wang,Niloofar Heshmati Aghda,Junhuang Jiang,Ayishah Mridula Habib,Defang Ouyang,Mohammed Maniruzzaman
出处
期刊:International Journal of Pharmaceutics [Elsevier BV]
卷期号:628: 122302-122302 被引量:19
标识
DOI:10.1016/j.ijpharm.2022.122302
摘要

Current microparticle (MP) development still strongly relies on the laborious trial-and-error approach. Herein, we developed a systemic method to evaluate the significance of MP formulation factors and predict drug loading efficiency (DLE) using design of experiment (DoE) and machine learning modeling. A first-in-class 3D printing concept was initially employed to fabricate polymeric MPs by a 3D printer. Sprayed Multi Adsorbed-droplet Reposing Technology (SMART) was developed to combine extrusion-based printing with emulsion evaporation technique to fabricate a small molecule drug i.e., 6-thioguanine (6-TG) loaded poly (lactide-co-glycolide) (PLGA) MPs. Compared to conventional emulsion evaporation method, SMART employs the shear force exerted by the printing nozzle rather than the sonication energy to generate smaller emulsion droplets in a single step. Furthermore, the applied shear force in the 3D printing process reported herein is controllable since the emulsion is extruded through the nozzle under preset printing conditions. The formulated MPs exhibited spherical structure with size distribution ∼ 1-3μ m in diameter and reached ∼ 100 % drug release at 10 h. Also, the papain-like protease (PLpro) inhibition efficacy of 6-TG in formulated MPs was maintained even after the printing process under different printing conditions. Furthermore, the formulation factor importance was assessed by DoE statistical analysis and further validated by machine learning modeling. Among the four process parameters (drug amount, printing speed, printing pressure, and nozzle size), drug amount was the most influential formulation factor. Moreover, it is interesting that nearly all the machine learning models, especially decision tree (DT), demonstrated superior performance in predicting DLE compared to DoE regression models. Overall, incorporating DoE and machine learning modeling shows great promises in the prediction and optimization of MP formulations factors by means of a novel SMART technology. Moreover, this systemic approach helps streamline the development of MP with programmable pharmaceutical attributes, representing a new paradigm for digital pharmaceutical science.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
松柏完成签到 ,获得积分10
1秒前
小学生学免疫完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助10
12秒前
lwk205应助小狒狒采纳,获得20
13秒前
乐正怡完成签到 ,获得积分10
15秒前
Yi羿完成签到 ,获得积分10
18秒前
jibenkun完成签到,获得积分10
24秒前
mark33442完成签到,获得积分10
28秒前
2520完成签到 ,获得积分10
37秒前
量子星尘发布了新的文献求助10
43秒前
x银河里完成签到 ,获得积分10
1分钟前
宇文雨文完成签到 ,获得积分10
1分钟前
健壮惋清完成签到 ,获得积分10
1分钟前
elisa828完成签到,获得积分10
1分钟前
zyw完成签到 ,获得积分10
1分钟前
Glory完成签到 ,获得积分10
1分钟前
V_I_G完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助150
1分钟前
英俊的铭应助周周采纳,获得10
1分钟前
loga80完成签到,获得积分0
1分钟前
坏猫完成签到 ,获得积分10
1分钟前
sweet雪儿妞妞完成签到 ,获得积分10
1分钟前
温暖的颜演完成签到 ,获得积分10
1分钟前
煜琪完成签到 ,获得积分10
1分钟前
Pann完成签到 ,获得积分10
1分钟前
scl完成签到 ,获得积分10
1分钟前
1分钟前
周周发布了新的文献求助10
1分钟前
ESC惠子子子子子完成签到 ,获得积分10
1分钟前
小蘑菇应助陶醉的烤鸡采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
Ceci完成签到 ,获得积分10
1分钟前
虞无声完成签到,获得积分10
1分钟前
CodeCraft应助科研通管家采纳,获得10
1分钟前
1分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
zz完成签到 ,获得积分10
2分钟前
玩命的无春完成签到 ,获得积分10
2分钟前
hr完成签到 ,获得积分10
2分钟前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Learning to Listen, Listening to Learn 520
Plasmonics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3868033
求助须知:如何正确求助?哪些是违规求助? 3410297
关于积分的说明 10667077
捐赠科研通 3134490
什么是DOI,文献DOI怎么找? 1729130
邀请新用户注册赠送积分活动 833184
科研通“疑难数据库(出版商)”最低求助积分说明 780620