Machine learning-guided field site selection for river classification

选址 选择(遗传算法) 领域(数学) 地理 地图学 机器学习 人工智能 考古 计算机科学 政治学 数学 法学 纯数学
作者
Zhihao Wang,G. B. Pasternack,Yufang Jin,C Rampini,Serena Alexander,Nikhil Kumar,Rune Storesund,Kathleen Perales,Chaehwan Lim,Stephanie A. Moreno,Igor Laćan
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:142: 104742-104742
标识
DOI:10.1016/j.jag.2025.104742
摘要

Sufficient abundance and variety of field site sampling are crucial for obtaining an accurate reach-scale river classification of a regional stream network in support of scientific research and river management. However, many studies still randomly select field sites or only visit accessible streams. This leads to an inadequate exploration of stream characteristics, resulting in incomplete or inaccurate classification. Machine learning has been recognized for discovering and extracting streams’ geomorphic patterns efficiently and accurately from data, but its application in field site sampling design is still in its infancy. This study developed a general and practical field site selection framework by incorporating machine learning in a human-in-the-loop manner. This framework includes three steps: (1) initial field site selection via machine learning from prior datasets, (2) selected field site accessibility evaluation and observation, and (3) additional field site decision and selection via an iterative learning process. In an example application to the San Francisco Bay Area (California, USA), our framework extracted representative geomorphic characteristics of (i) previous known stream types from prior labeled and geospatial datasets and (ii) previously unrecognized stream types based on uncertainty information obtained by machine learning. Moreover, we propose methods for replacing inaccessible sites to ensure sufficient information is retained in the selected field sites. Results revealed clear differences in variable distributions between the 148 high‐certainty sites and the 51 high‐uncertainty sites, a pattern that was validated by our field surveys. Furthermore, the 41 newly identified high‐uncertainty sites were found under-represented in the initial surveyed sites and thus their selection for the next round of field surveys will help fill the important feature gaps left by the initial survey. The feasibility of this framework allows river scientists and land use decision-makers to better understand river patterns and manage spatial planning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李根苗发布了新的文献求助10
刚刚
充电宝应助zhenya采纳,获得10
刚刚
prisoner发布了新的文献求助10
刚刚
刚刚
安详的冬瓜完成签到,获得积分10
1秒前
1秒前
wang发布了新的文献求助10
1秒前
1秒前
1秒前
脑洞疼应助漆漆采纳,获得10
1秒前
张雯雯发布了新的文献求助10
1秒前
稳重元菱完成签到,获得积分10
1秒前
斯文败类应助刘十三采纳,获得10
2秒前
i1完成签到,获得积分10
2秒前
3秒前
小二郎应助芒果爸爸采纳,获得10
3秒前
饱饱完成签到,获得积分10
3秒前
Liangyu完成签到,获得积分10
3秒前
4秒前
斯文败类应助聪慧的曼柔采纳,获得10
4秒前
4秒前
Stella应助爱听歌安彤采纳,获得10
4秒前
mmyhn发布了新的文献求助10
5秒前
5秒前
拼搏雨兰完成签到,获得积分10
5秒前
5秒前
6秒前
Accelerator发布了新的文献求助10
6秒前
Affiliation完成签到,获得积分10
6秒前
竹沐鱼发布了新的文献求助10
6秒前
7秒前
7秒前
xiaoming完成签到 ,获得积分10
7秒前
领导范儿应助冷空气采纳,获得10
7秒前
7秒前
7秒前
Orange应助LI采纳,获得10
7秒前
酷炫的傲易完成签到,获得积分10
8秒前
归一完成签到,获得积分10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
Sport, Social Media, and Digital Technology: Sociological Approaches 650
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5593014
求助须知:如何正确求助?哪些是违规求助? 4678980
关于积分的说明 14807525
捐赠科研通 4642972
什么是DOI,文献DOI怎么找? 2534233
邀请新用户注册赠送积分活动 1502316
关于科研通互助平台的介绍 1469293