Ventilation Rate Prediction in Naturally Ventilated Greenhouses Using a CFD-Driven Machine Learning Model

通风(建筑) 计算流体力学 计算机科学 环境科学 工程类 机械工程 航空航天工程
作者
Se-Jun Park,In-Bok Lee,Jeong‐Wook Seo,Uk-Hyeon Yeo,Jeong-Hwa Cho,Cristina Decano-Valentin
出处
期刊:Journal of the ASABE [American Society of Agricultural and Biological Engineers]
卷期号:68 (4): 573-589
标识
DOI:10.13031/ja.16019
摘要

Highlights CFD can be used to develop a CFD-driven machine learning model that predicts the TGD ventilation rate in greenhouses. Bootstrapping can be an important point to overcome the CFD case computation limit. The developed CFD-driven machine learning model can be used to control natural ventilation in greenhouses. ABSTRACT. In facility agriculture, ventilation is a fundamental factor, particularly natural ventilation, which is essential for improving crop productivity and conserving energy consumption. Computational fluid dynamics (CFD) has recently emerged as a key tool for quantitatively analyzing and predicting natural ventilation. However, CFD simulations are computationally demanding and resource-intensive when applied across diverse environmental conditions. In contrast, machine learning (ML) enables rapid and accurate predictions within its trained data range but involves significant effort to construct training datasets and lacks reliability in extrapolation scenarios. To overcome these limitations and integrate the advantages of both methods, this study developed an ML model using a CFD-generated training dataset covering the desired range of environmental parameters. Natural ventilation rates were determined using a CFD model based on the tracer gas decay (TGD) method for 27 locations within a greenhouse, considering variations in wind direction, wind speed, and vent opening condition. These CFD-derived ventilation rates were used as training data for ML models. Multiple regression, random forest, support vector regression, and deep neural network models were constructed, and their predictive performance was compared. To address the constraint of limited CFD simulation cases, the bootstrapping technique was employed to expand the dataset. The accuracy of the developed ML models was evaluated, demonstrating the feasibility of utilizing CFD-generated data to construct ML models for ventilation rate prediction. This approach highlights the potential for combining CFD and ML techniques to optimize natural ventilation in facility agriculture. Keywords: CFD, Machine learning, Natural ventilation, Single-span greenhouse.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
想吃糖葫芦完成签到 ,获得积分10
1秒前
1秒前
1秒前
不想搞科研完成签到,获得积分20
1秒前
叽里咕卢完成签到 ,获得积分10
2秒前
悲凉的沉鱼完成签到,获得积分10
2秒前
woken关注了科研通微信公众号
2秒前
陈诚完成签到,获得积分20
2秒前
2秒前
量子星尘发布了新的文献求助50
3秒前
3秒前
4秒前
4秒前
曲洛斯坦发布了新的文献求助10
4秒前
zxche发布了新的文献求助10
4秒前
4秒前
华仔应助qphys采纳,获得90
5秒前
脑洞疼应助微笑的鼠标采纳,获得10
5秒前
5秒前
传奇3应助青易采纳,获得10
5秒前
5秒前
SWL完成签到,获得积分10
5秒前
白巾完成签到,获得积分20
6秒前
6秒前
6秒前
6秒前
6秒前
7秒前
崔懿龍发布了新的文献求助10
7秒前
吴彦祖完成签到,获得积分20
8秒前
8秒前
9秒前
MlzqdE完成签到,获得积分20
9秒前
9秒前
9秒前
9秒前
SWL发布了新的文献求助10
10秒前
wltwb发布了新的文献求助10
10秒前
田様应助陈词滥调采纳,获得10
10秒前
momo完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
解放军总医院眼科医学部病例精解 1000
温州医科大学附属眼视光医院斜弱视与双眼视病例精解 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4894492
求助须知:如何正确求助?哪些是违规求助? 4176829
关于积分的说明 12965698
捐赠科研通 3939750
什么是DOI,文献DOI怎么找? 2161400
邀请新用户注册赠送积分活动 1179692
关于科研通互助平台的介绍 1085404