清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Artificial intelligence for precision viral surveillance of emerging infectious disease (EID): Data-driven digital twin metaverse-envisioned study

计算机科学 虚拟实境 传染病(医学专业) 新发传染病 数据科学 疾病 人工智能 病毒学 生物 医学 爆发 病理 虚拟现实
作者
Ting-Yu Lin,Amy Ming‐Fang Yen,Sam Li‐Sheng Chen,Chen‐Yang Hsu,Yen‐Po Yeh,Chien‐Jen Chen
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:196: 110877-110877
标识
DOI:10.1016/j.compbiomed.2025.110877
摘要

Precision containment strategies incorporating artificial intelligence (AI)-driven dynamic viral shedding models are pivotal for the effective control of emerging infectious diseases (EIDs). Among the foundational applications within the Metaverse, digital twins-which integrate physical and virtual environments via augmented reality (AR) and mixed reality (MR)-offer a promising solution. Leveraging IoT-like laboratory-based viral shedding data together with demographic and clinical features, this study aims to develop a data-driven digital twin model for precision viral surveillance to monitor EIDs and to provide an immersive framework for evaluating the effectiveness of contact tracing, isolation, and quarantine protocols within the Metaverse. We proposed a digital twin thread architecture, comprising a temporal data pipeline designed to support multiple twin functionalities. The process began with the development of the physical twin, which incorporated dynamic cycle threshold (Ct) data from serial RT-PCR tests-serving as IoT-like laboratory inputs along with the associated demographic and clinical data. The underlying parameters of infectious disease dynamics were learned through Markov-based statistical machine learning, applied to these time-series data. A virtual avatar representing these digital threads-a virtual thread cohort-was rendered in virtual reality (VR). Analytic twins, enhanced via AR, overlaid virtual data onto the physical twin to bridge observed and inferred states. Subsequently, decision twins, implemented through MR, were utilized to assess the effectiveness of immersive, precision-guided interventions such as contact tracing, isolation, and quarantine. This framework was applied to COVID-19 outbreaks caused by the Alpha and Omicron variants of concern (VOCs) in Changhua, Taiwan, using viral shedding data. A showcase case study on precision contact tracing during the Alpha VOC outbreak was presented. A noise-driven privacy protection method was implemented for addressing the concern of patient confidentiality. From the physical twin data of 269 confirmed Alpha VOC cases, a virtual thread cohort of 1,000,000 simulated cases was generated. Analytic twins, enabled by AR, synthesized data from both physical observations and virtual predictions, capturing real-time dynamics that were otherwise unobservable. Using this framework, the initial Alpha VOC cluster was analyzed to derive key transmission indicators. Decision twins identified optimal Ct-guided contact tracing windows: for individuals with Ct values between 18 and 25, retrospective tracing for 7 days achieved 30 % effectiveness, 13 days yielded 60 %, and 24 days reached 90 %. For Omicron VOC, the effectiveness of quarantine among vaccinated individuals (with booster) reached 77 % after 3 days and 94 % after 7 days, compared to 39 % and 76 % in unboosted individuals, respectively. The utility of precision contact tracing within the Metaverse was validated by the Alpha VOC outbreak showcase study along with the presentation of a noise-driven approach for data privacy protection and data security. This Ct-guided, data-driven digital twin model demonstrates a novel approach to EID containment, highlighting the potential of the Metaverse as a convergence of physical and cyber domains. Our findings illustrate the applicability and scalability of digital twin frameworks in precision public health and underscore their broader implications for future healthcare innovations taking data security and privacy protection into account.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jingguofu完成签到 ,获得积分10
10秒前
婉莹完成签到 ,获得积分0
12秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
笔墨纸砚完成签到 ,获得积分10
1分钟前
1分钟前
飞龙在天完成签到 ,获得积分10
1分钟前
OmniQuan完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
V_I_G完成签到 ,获得积分0
1分钟前
2分钟前
2分钟前
聪慧的凝海完成签到 ,获得积分0
2分钟前
SciGPT应助阔达的未来采纳,获得30
2分钟前
Lucas应助科研通管家采纳,获得10
2分钟前
vbnn完成签到 ,获得积分10
2分钟前
jcksonzhj完成签到,获得积分10
2分钟前
kevin完成签到 ,获得积分10
2分钟前
浚稚完成签到 ,获得积分10
2分钟前
笑傲完成签到,获得积分10
3分钟前
3分钟前
优美的莹芝完成签到,获得积分10
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
lixiaolan完成签到 ,获得积分10
4分钟前
千里草完成签到,获得积分10
4分钟前
xiaoxiao完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
6分钟前
6分钟前
波波完成签到 ,获得积分10
6分钟前
脑洞疼应助科研通管家采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
6分钟前
火星上超短裙完成签到,获得积分10
6分钟前
6分钟前
wzbc发布了新的文献求助10
6分钟前
6分钟前
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Strength and Conditioning in Sports From Science to Practice By Michael Stone, Timothy Suchomel, W. Hornsby, John Wagle, Aaron Cunanan Copyright 2022 600
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5617154
求助须知:如何正确求助?哪些是违规求助? 4701498
关于积分的说明 14913801
捐赠科研通 4750630
什么是DOI,文献DOI怎么找? 2549340
邀请新用户注册赠送积分活动 1512363
关于科研通互助平台的介绍 1474091