Exploring the potential of generative artificial intelligence in medical image synthesis: opportunities, challenges, and future directions

生成语法 转化式学习 工作流程 医学影像学 领域(数学) 人工智能 生成模型 计算机科学 数据科学 心理学 教育学 数学 数据库 纯数学
作者
Bardia Khosravi,Saptarshi Purkayastha,Bradley J. Erickson,Hari Trivedi,Judy Wawira Gichoya
出处
期刊:The Lancet Digital Health [Elsevier]
卷期号:7 (9): 100890-100890 被引量:3
标识
DOI:10.1016/j.landig.2025.100890
摘要

Generative artificial intelligence has emerged as a transformative force in medical imaging since 2022, enabling the creation of derivative synthetic datasets that closely resemble real-world data. This Viewpoint examines key aspects of synthetic data, focusing on its advancements, applications, and challenges in medical imaging. Various generative artificial intelligence image generation paradigms, such as physics-informed and statistical models, and their potential to augment and diversify medical research resources are explored. The promises of synthetic datasets, including increased diversity, privacy preservation, and multifunctionality, are also discussed, along with their ability to model complex biological phenomena. Next, specific applications using synthetic data such as enhancing medical education, augmenting rare disease datasets, improving radiology workflows, and enabling privacy-preserving multicentre collaborations are highlighted. The challenges and ethical considerations surrounding generative artificial intelligence, including patient privacy, data copying, and potential biases that could impede clinical translation, are also addressed. Finally, future directions for research and development in this rapidly evolving field are outlined, emphasising the need for robust evaluation frameworks and responsible utilisation of generative artificial intelligence in medical imaging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
zhang完成签到,获得积分10
2秒前
Kelly1426完成签到,获得积分10
2秒前
JamesPei应助科研通管家采纳,获得10
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
不倦应助科研通管家采纳,获得10
3秒前
李健应助科研通管家采纳,获得10
3秒前
BareBear应助科研通管家采纳,获得10
3秒前
风中冰香应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
不倦应助科研通管家采纳,获得10
3秒前
BareBear应助科研通管家采纳,获得10
3秒前
风中冰香应助科研通管家采纳,获得10
3秒前
萧萧应助科研通管家采纳,获得10
3秒前
离雪完成签到,获得积分10
3秒前
中恐完成签到,获得积分0
3秒前
不倦应助科研通管家采纳,获得10
4秒前
小青椒应助科研通管家采纳,获得20
4秒前
Leonardi应助科研通管家采纳,获得400
4秒前
Owen应助科研通管家采纳,获得30
4秒前
浮游应助科研通管家采纳,获得10
4秒前
一蓑烟雨完成签到,获得积分10
4秒前
共享精神应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
4秒前
HolmeTao完成签到 ,获得积分10
5秒前
王懒懒完成签到 ,获得积分10
5秒前
6秒前
FFFFFFG完成签到,获得积分10
6秒前
科研通AI6应助Maiden采纳,获得10
6秒前
阿良完成签到 ,获得积分10
7秒前
echo完成签到,获得积分10
7秒前
啦啦啦完成签到 ,获得积分10
7秒前
笨笨雪碧发布了新的文献求助10
8秒前
8秒前
与离完成签到 ,获得积分10
8秒前
雨香完成签到,获得积分10
8秒前
欣慰外绣完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5494463
求助须知:如何正确求助?哪些是违规求助? 4592192
关于积分的说明 14435715
捐赠科研通 4524930
什么是DOI,文献DOI怎么找? 2479141
邀请新用户注册赠送积分活动 1463989
关于科研通互助平台的介绍 1437010