Round window membrane extracellular vesicles facilitate inner ear drug delivery

细胞外小泡 小泡 药物输送 圆窗 内耳 化学 药品 细胞外 生物物理学 细胞生物学 药理学 医学 生物 解剖 生物化学 有机化学
作者
S Holdsclaw,Dylan Silkstone,H Jeanneret,Farimah Moazzam,N Tehsin,Earl R. Norris,E Talic,Kristen D. Popowski,Glenn Cruse,Ke Cheng,Adele Moatti
出处
期刊:Journal of Controlled Release [Elsevier]
卷期号:387: 114153-114153 被引量:3
标识
DOI:10.1016/j.jconrel.2025.114153
摘要

Hearing loss affects over 430 million people worldwide, yet effective treatments remain limited, in part due to challenges of inner ear drug delivery, a process that is risky, unreliable, and inefficient. Addressing this challenge calls for delivery approaches that ensure therapies reach the inner ear safely and effectively. Intratympanic (IT) injection, which delivers drugs directly into the middle ear, is currently the safest method for preserving cochlear integrity. However, its efficiency is limited by the round window membrane (RWM), a barrier with tight junctions that restricts therapy-related substance passage into the inner ear. We propose that extracellular vesicles (EVs) released by RWM cells could serve as a novel vehicle for drug delivery, as their membrane features and intravesicular components may facilitate IT transport. Importantly, EVs are also expected to elicit minimal immune responses, addressing a key safety concern for inner ear therapies. We isolated and characterized EVs derived from RWM cells, including sequencing and Ingenuity Pathway Analysis to predict drug delivery pathways and immune-related functions. To establish translational relevance, we investigated their uptake in vitro and assessed passage across the RWM ex vivo and in vivo, demonstrating that dexamethasone-loaded EVs effectively crossed the membrane in a porcine model. We further demonstrated functional delivery potential by showing enhanced cytoplasmic retention of brain-derived neurotrophic factor (BDNF) and improved adeno-associated virus (AAV)-mediated transduction in vitro.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刻苦的雨莲完成签到,获得积分10
刚刚
Jasper应助Jayson采纳,获得10
刚刚
1秒前
1秒前
2秒前
3秒前
3秒前
领导范儿应助芭菲采纳,获得30
3秒前
英吉利25发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
情怀应助撒西不理采纳,获得10
10秒前
10秒前
吴丹完成签到,获得积分10
13秒前
11完成签到,获得积分10
16秒前
16秒前
17秒前
李健的粉丝团团长应助lxl采纳,获得10
17秒前
18秒前
18秒前
沂昀完成签到 ,获得积分10
19秒前
李_花花完成签到,获得积分10
19秒前
21秒前
24秒前
一年5篇发布了新的文献求助10
24秒前
量子星尘发布了新的文献求助10
24秒前
24秒前
25秒前
26秒前
liuqizong123发布了新的文献求助10
26秒前
量子星尘发布了新的文献求助10
27秒前
27秒前
liaoxianqing发布了新的文献求助10
28秒前
我爱学习完成签到,获得积分10
28秒前
lixiaofan发布了新的文献求助10
28秒前
鳗鱼忆山完成签到 ,获得积分10
29秒前
30秒前
lxl发布了新的文献求助10
30秒前
31秒前
小二郎应助蘇尼Ai采纳,获得10
31秒前
撒西不理发布了新的文献求助10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5777597
求助须知:如何正确求助?哪些是违规求助? 5634534
关于积分的说明 15446288
捐赠科研通 4909506
什么是DOI,文献DOI怎么找? 2641796
邀请新用户注册赠送积分活动 1589749
关于科研通互助平台的介绍 1544178