清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Universal Method for Enhancing Dynamics in Neural Networks via Memristor and Application in IoT-Based Robot Navigation

作者
Qiang Lai,Minghong Qin
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:56 (1): 557-566
标识
DOI:10.1109/tcyb.2025.3607140
摘要

Special tasks in complex and extreme environments require mobile robots to possess the good capabilities of navigation and securing map data. Mobile robots driven by the chaotic properties of memristive neural networks (MNN) can offer intriguing insights. However, the expandable MNN capable of providing multiple reliable options for diverse application scenarios has yet to be thoroughly explored. Hence, this article proposes a new universal method to enhance the dynamics in neural networks for generating numerous neural networks with rich dynamics, providing multiple options for the navigation and security of IoT-based robots. The enhanced dynamics in this method benefit from expanding the number of memristive electromagnetic radiation, the number of neurons, and their integration. Many different memristive central cyclic neural network (MCCNN) are successfully derived from the newly constructed central cyclic neural network as an example. Various dynamics of memristive central cyclic neural networks (MCCNN) are numerically investigated, including bifurcation, homogeneous and heterogeneous multistability, and large-scale amplitude control. The analog circuit and digital hardware platform are built to verify the physical existence and feasibility of MCCNN. Finally, MCCNN is applied to drive the IoT-based mobile robot. To evaluate the robot's area coverage, obstacle avoidance performance, several experiments are carried out, which validate the robot's superiority.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
alanbike完成签到,获得积分10
10秒前
miaomiao123完成签到 ,获得积分10
10秒前
青树柠檬完成签到 ,获得积分10
24秒前
房天川完成签到 ,获得积分10
32秒前
50秒前
科研通AI6应助科研通管家采纳,获得10
56秒前
1分钟前
1分钟前
herococa完成签到,获得积分0
1分钟前
Yorshka完成签到,获得积分10
1分钟前
科研通AI6应助Yorshka采纳,获得30
2分钟前
汉堡包应助Developing_human采纳,获得10
2分钟前
Akim应助火星上的幻梦采纳,获得10
2分钟前
12305014077完成签到 ,获得积分10
3分钟前
大医仁心完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
trophozoite完成签到 ,获得积分10
4分钟前
fabius0351完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
所所应助科研通管家采纳,获得10
4分钟前
JamesPei应助科研通管家采纳,获得10
4分钟前
4分钟前
乐乐应助Developing_human采纳,获得50
5分钟前
QI完成签到 ,获得积分10
6分钟前
6分钟前
灿烂而孤独的八戒完成签到 ,获得积分0
6分钟前
6分钟前
重庆森林应助科研通管家采纳,获得10
6分钟前
7分钟前
劉浏琉发布了新的文献求助10
7分钟前
西山菩提完成签到,获得积分10
8分钟前
8分钟前
量子星尘发布了新的文献求助10
8分钟前
8分钟前
8分钟前
8分钟前
8分钟前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644889
求助须知:如何正确求助?哪些是违规求助? 4766363
关于积分的说明 15025903
捐赠科研通 4803275
什么是DOI,文献DOI怎么找? 2568137
邀请新用户注册赠送积分活动 1525607
关于科研通互助平台的介绍 1485151