化学
血浆糖原
炎症
人口
促炎细胞因子
细胞生物学
信号转导
免疫学
生物化学
生物
磷脂
人口学
膜
社会学
作者
Yern‐Hyerk Shin,Sunghee Bang,Ramnik J. Xavier,Jon Clardy
摘要
Eggerthella lenta is both one of the most studied and least understood members of the human gut microbiome. Most of the interest in this Gram-positive anaerobe originates from multiple robust associations of its population with a variety of autoimmune diseases, perhaps most notably inflammatory bowel disease (IBD). The links between bacteria and inflammation are only partially known. Inflammation is driven by Th17 cells and their inflammatory cytokine IL-17, and the population of these cells is promoted by a transcription factor, RORγt. Bacterial metabolites appear to activate RORγt in a cell- and antigen-independent fashion, but the metabolites and their activating mechanism are unknown. This report describes an assay-driven search for pro-inflammatory metabolites from E. lenta that revealed a plasmalogen-triggered plasmalogen pair that forms a single molecule signal transduction device. Small electrophiles characteristic of inflammatory environments react with the plasmalogen's sensitive vinyl ether moiety to create a lipid signal, a lysoglycoglycerolipid that upregulates the inflammatory cytokines TNF-α and IL-6 through a TLR receptor. This provides a molecular mechanism that allows E. lenta to upregulate inflammatory responses in a cell- and antigen-independent fashion. This molecular mechanism is similar to an endogenous signaling system that upregulates RORγt through a triggered mammalian plasmalogen signal, 1-18:0-lysophosphatidylethanolamine.
科研通智能强力驱动
Strongly Powered by AbleSci AI