An Endodontic Forecasting Model Based on the Analysis of Preoperative Dental Radiographs: A Pilot Study on an Endodontic Predictive Deep Neural Network

冠状面 接收机工作特性 射线照相术 医学 牙科 根管 口腔正畸科 卷积神经网络 人工智能 计算机科学 放射科 内科学
作者
Junghoon Lee,Hyunseok Seo,Yoon Jeong Choi,Chena Lee,Sunil Kim,Ye Sel Lee,Sukjoon Lee,Euiseong Kim
出处
期刊:Journal of Endodontics [Elsevier BV]
卷期号:49 (6): 710-719 被引量:5
标识
DOI:10.1016/j.joen.2023.03.015
摘要

This study aimed to evaluate the use of deep convolutional neural network (DCNN) algorithms to detect clinical features and predict the three-year outcome of endodontic treatment on preoperative periapical radiographs.A database of single-root premolars that received endodontic treatment or retreatment by endodontists with presence of three-year outcome was prepared (n = 598). We constructed a 17-layered DCNN with a self-attention layer (Periapical Radiograph Explanatory System with Self-Attention Network [PRESSAN-17]), and the model was trained, validated, and tested to 1) detect 7 clinical features, that is, full coverage restoration, presence of proximal teeth, coronal defect, root rest, canal visibility, previous root filling, and periapical radiolucency and 2) predict the three-year endodontic prognosis by analyzing preoperative periapical radiographs as an input. During the prognostication test, a conventional DCNN without a self-attention layer (residual neural network [RESNET]-18) was tested for comparison. Accuracy and area under the receiver-operating-characteristic curve were mainly evaluated for performance comparison. Gradient-weighted class activation mapping was used to visualize weighted heatmaps.PRESSAN-17 detected full coverage restoration (area under the receiver-operating-characteristic curve = 0.975), presence of proximal teeth (0.866), coronal defect (0.672), root rest (0.989), previous root filling (0.879), and periapical radiolucency (0.690) significantly, compared to the no-information rate (P < .05). Comparing the mean accuracy of 5-fold validation of 2 models, PRESSAN-17 (67.0%) showed a significant difference to RESNET-18 (63.4%, P < .05). Also, the area under average receiver-operating-characteristic of PRESSAN-17 was 0.638, which was significantly different compared to the no-information rate. Gradient-weighted class activation mapping demonstrated that PRESSAN-17 correctly identified clinical features.Deep convolutional neural networks can detect several clinical features in periapical radiographs accurately. Based on our findings, well-developed artificial intelligence can support clinical decisions related to endodontic treatments in dentists.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研小白完成签到,获得积分10
刚刚
思源应助狒狒采纳,获得10
刚刚
NexusExplorer应助lxh采纳,获得10
刚刚
毋意完成签到,获得积分20
1秒前
青天鸟1989完成签到,获得积分10
1秒前
an发布了新的文献求助10
1秒前
佛系试验发布了新的文献求助10
2秒前
龙哥发布了新的文献求助10
2秒前
李小木给李小木的求助进行了留言
2秒前
2秒前
落后的凝梦完成签到 ,获得积分10
2秒前
4秒前
孙奕完成签到,获得积分10
4秒前
nozero应助龙卡烧烤店采纳,获得50
4秒前
toda完成签到,获得积分10
4秒前
5秒前
许甜甜鸭应助呼呼呼采纳,获得20
5秒前
松o发布了新的文献求助30
5秒前
吃好睡好不脱发应助dyfsj采纳,获得10
5秒前
6秒前
6秒前
霸气的断缘完成签到,获得积分10
6秒前
大个应助weixin112233采纳,获得10
7秒前
NexusExplorer应助Cx330采纳,获得10
8秒前
充电宝应助青城粘豆包采纳,获得10
9秒前
黄辉冯完成签到,获得积分10
9秒前
昏睡的蟠桃举报lgj求助涉嫌违规
9秒前
9秒前
我淦完成签到 ,获得积分10
9秒前
酱板鸭完成签到,获得积分10
10秒前
完美世界应助龙哥采纳,获得10
11秒前
SR发布了新的文献求助10
12秒前
12秒前
最牛的kangkang完成签到 ,获得积分10
12秒前
ZZ完成签到,获得积分10
12秒前
Y元Y完成签到,获得积分10
13秒前
14秒前
珍珠奶茶发布了新的文献求助10
15秒前
15秒前
SKZ完成签到,获得积分10
16秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Fatigue of Materials and Structures 260
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
An Integrated Solution for Application of Next-Generation Sequencing in Newborn Screening 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831845
求助须知:如何正确求助?哪些是违规求助? 3373989
关于积分的说明 10483052
捐赠科研通 3093927
什么是DOI,文献DOI怎么找? 1703212
邀请新用户注册赠送积分活动 819322
科研通“疑难数据库(出版商)”最低求助积分说明 771423