亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A review of enzyme design in catalytic stability by artificial intelligence

理论(学习稳定性) 自编码 计算机科学 人工神经网络 人工智能 机器学习
作者
Yongfan Ming,Wenkang Wang,Rui Yin,Min Zeng,Li Tang,Shizhe Tang,Min Li
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (3) 被引量:39
标识
DOI:10.1093/bib/bbad065
摘要

Abstract The design of enzyme catalytic stability is of great significance in medicine and industry. However, traditional methods are time-consuming and costly. Hence, a growing number of complementary computational tools have been developed, e.g. ESMFold, AlphaFold2, Rosetta, RosettaFold, FireProt, ProteinMPNN. They are proposed for algorithm-driven and data-driven enzyme design through artificial intelligence (AI) algorithms including natural language processing, machine learning, deep learning, variational autoencoder/generative adversarial network, message passing neural network (MPNN). In addition, the challenges of design of enzyme catalytic stability include insufficient structured data, large sequence search space, inaccurate quantitative prediction, low efficiency in experimental validation and a cumbersome design process. The first principle of the enzyme catalytic stability design is to treat amino acids as the basic element. By designing the sequence of an enzyme, the flexibility and stability of the structure are adjusted, thus controlling the catalytic stability of the enzyme in a specific industrial environment or in an organism. Common indicators of design goals include the change in denaturation energy (ΔΔG), melting temperature (ΔTm), optimal temperature (Topt), optimal pH (pHopt), etc. In this review, we summarized and evaluated the enzyme design in catalytic stability by AI in terms of mechanism, strategy, data, labeling, coding, prediction, testing, unit, integration and prospect.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
2秒前
6秒前
12秒前
无花果应助青柠采纳,获得10
20秒前
22秒前
26秒前
电量过低完成签到 ,获得积分10
30秒前
33秒前
青柠发布了新的文献求助10
37秒前
山东大煎饼完成签到,获得积分10
39秒前
39秒前
酷酷海豚完成签到,获得积分10
40秒前
41秒前
浮游应助科研通管家采纳,获得10
42秒前
Huzhu应助科研通管家采纳,获得10
42秒前
CipherSage应助科研通管家采纳,获得10
42秒前
浮浮世世应助科研通管家采纳,获得30
42秒前
Huzhu应助科研通管家采纳,获得10
42秒前
浮游应助科研通管家采纳,获得10
42秒前
Huzhu应助科研通管家采纳,获得10
42秒前
浮游应助科研通管家采纳,获得10
42秒前
隐形曼青应助科研通管家采纳,获得10
42秒前
Nnnnnkw完成签到 ,获得积分10
42秒前
59秒前
1分钟前
1分钟前
1分钟前
1分钟前
华理附院孙文博完成签到 ,获得积分10
1分钟前
大胆的芸遥完成签到 ,获得积分10
1分钟前
打打应助21145077采纳,获得10
1分钟前
1分钟前
1分钟前
何为完成签到 ,获得积分0
1分钟前
难过的踏歌完成签到,获得积分10
1分钟前
1分钟前
1分钟前
王文艺发布了新的文献求助10
1分钟前
flyinthesky完成签到,获得积分10
1分钟前
大模型应助程潇老婆采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5493845
求助须知:如何正确求助?哪些是违规求助? 4591820
关于积分的说明 14434723
捐赠科研通 4524256
什么是DOI,文献DOI怎么找? 2478740
邀请新用户注册赠送积分活动 1463717
关于科研通互助平台的介绍 1436499