清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Learning from dermoscopic images in association with clinical metadata for skin lesion segmentation and classification

计算机科学 分割 人工智能 管道(软件) 特征(语言学) 模式识别(心理学) 判别式 元数据 特征学习 深度学习 机器学习 语言学 操作系统 哲学 程序设计语言
作者
Caixia Dong,Duwei Dai,Yizhi Zhang,Chunyan Zhang,Zongfang Li,Songhua Xu
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:152: 106321-106321 被引量:28
标识
DOI:10.1016/j.compbiomed.2022.106321
摘要

Automatic segmentation and classification of lesions are two clinically significant tasks in the computer-aided diagnosis of skin diseases. Both tasks are challenging due to the nonnegligible lesion differences in dermoscopic images from different patients. In this paper, we propose a novel pipeline to efficiently implement skin lesions' segmentation and classification tasks, which consists of a segmentation network and a classification network. To improve the performance of the segmentation network, we propose a novel module of Multi-Scale Holistic Feature Exploration (MSH) to thoroughly exploit perceptual clues latent among multi-scale feature maps as synthesized by the decoder. The MSH module enables holistic exploration of features across multiple scales to more effectively support downstream image analysis tasks. To boost the performance of the classification network, we propose a novel module of Cross-Modality Collaborative Feature Exploration (CMC) to discover latent discriminative features by collaboratively exploiting potential relationships between cross-modal features of dermoscopic images and clinical metadata. The CMC module enables dynamically capturing versatile interaction effects among cross-modal features during the model's representation learning procedure by discriminatively and adaptively learning the interaction weight associated with each crossmodality feature pair. In addition, to effectively reduce background noise and boost the lesion discrimination ability of the classification network, we crop the images based on lesion masks generated by the best segmentation model. We evaluate the proposed pipeline on the four public skin lesion datasets, where the ISIC 2018 and PH2 are for segmentation, and the ISIC 2019 and ISIC 2020 are combined into a new dataset, ISIC 2019&2020, for classification. It achieves a Jaccard index of 83.31% and 90.14% in skin lesion segmentation, an AUC of 97.98% and an Accuracy of 92.63% in skin lesion classification, which is superior to the performance of representative state-of-the-art skin lesion segmentation and classification methods. Last but not least, the new model for segmentation utilizes much fewer model parameters (3.3 M) than its peer approaches, leading to a greatly reduced number of labeled samples required for model training, which obtains substantially stronger robustness than its peers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
50秒前
娟娟加油完成签到 ,获得积分10
55秒前
追风发布了新的文献求助10
1分钟前
孤独剑完成签到 ,获得积分10
1分钟前
1分钟前
追风完成签到,获得积分10
1分钟前
1分钟前
1分钟前
江洋大盗发布了新的文献求助10
1分钟前
5433完成签到 ,获得积分10
2分钟前
2分钟前
薛家泰完成签到 ,获得积分10
2分钟前
gmc完成签到 ,获得积分10
2分钟前
3分钟前
飞龙在天完成签到 ,获得积分10
3分钟前
西安浴日光能赵炜完成签到,获得积分10
3分钟前
丘比特应助科研通管家采纳,获得10
3分钟前
英俊的铭应助du采纳,获得10
4分钟前
量子星尘发布了新的文献求助50
4分钟前
4分钟前
du发布了新的文献求助10
4分钟前
hwen1998完成签到 ,获得积分10
4分钟前
机智的孤兰完成签到 ,获得积分10
4分钟前
Wow完成签到,获得积分10
4分钟前
披着羊皮的狼完成签到 ,获得积分10
4分钟前
du完成签到,获得积分20
4分钟前
你好棒呀完成签到,获得积分10
5分钟前
科研通AI5应助守候在雨天采纳,获得10
5分钟前
情怀应助Wow采纳,获得10
5分钟前
陌小石完成签到 ,获得积分10
6分钟前
6分钟前
甜蜜听云完成签到 ,获得积分10
6分钟前
6分钟前
无悔完成签到 ,获得积分10
6分钟前
常有李完成签到,获得积分10
6分钟前
binfo完成签到,获得积分0
7分钟前
7分钟前
研友_nxw2xL完成签到,获得积分10
7分钟前
muriel完成签到,获得积分0
7分钟前
7分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 2026 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Target genes for RNAi in pest control: A comprehensive overview 600
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
Design and Development of A CMOS Integrated Multimodal Sensor System with Carbon Nano-electrodes for Biosensor Applications 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5105597
求助须知:如何正确求助?哪些是违规求助? 4315392
关于积分的说明 13444439
捐赠科研通 4144050
什么是DOI,文献DOI怎么找? 2270903
邀请新用户注册赠送积分活动 1273380
关于科研通互助平台的介绍 1210566