清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Early Detection of Sepsis Using LSTM Neural Network with Electronic Health Record

败血症 人工神经网络 医学 机器学习 人工智能 深度学习 超参数 疾病 重症监护医学 计算机科学 内科学
作者
Saroja Kumar Rout,Bibhuprasad Sahu,Amrutanshu Panigrahi,Bachan Nayak,Abhilash Pati
出处
期刊:Smart innovation, systems and technologies 卷期号:: 201-207 被引量:1
标识
DOI:10.1007/978-981-19-6068-0_19
摘要

Early identification of sepsis may help in identifying possible risks and take the necessary actions to prevent more severe situations. We employed a recurrent neural network with Long Short-Term Memory (LSTM) and machine learning to identify the sepsis in its early stage. Sepsis can become a life-threatening disorder caused by the body's response to infection, which results in tissue destruction, organ failure, and death. Every year, around 30 million people get sepsis, with one-fifth of them dying as a result of the disease. Early detection of sepsis and prompt treatment can often save a patient's life. With the use of a Deep neural network, predict whether or not a patient has Sepsis Disease based on his or her ICU data. The objective of this study is to use physiological data to detect sepsis early. Patients' data, such as vital signs, laboratory results, and demographics, are used as inputs. For the inference phase, we employed an LSTM to determine the best training hyperparameters and probability threshold. In this paper, an LSTM-based model for predicting Sepsis in ICU patients is proposed. We created a data pipeline that cleaned and processed data while also identifying relevant predictive characteristics using RF and LR approaches and training LSTM networks. With an AUC-ROC score of 0.696, RF is our top conventional classifier.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
24秒前
budingman发布了新的文献求助10
30秒前
雨纷纷完成签到,获得积分10
59秒前
1分钟前
烟消云散发布了新的文献求助10
1分钟前
小二郎应助千里草采纳,获得10
1分钟前
搜集达人应助烟消云散采纳,获得10
1分钟前
1分钟前
1分钟前
彭于晏应助一个可爱玉采纳,获得10
1分钟前
一个可爱玉完成签到,获得积分20
2分钟前
杨天天完成签到 ,获得积分10
2分钟前
hongt05完成签到 ,获得积分10
2分钟前
2分钟前
烟消云散发布了新的文献求助10
2分钟前
lucky完成签到 ,获得积分10
3分钟前
3分钟前
来玩的发布了新的文献求助10
3分钟前
tkurds发布了新的文献求助10
4分钟前
4分钟前
liudy发布了新的文献求助10
4分钟前
隐形曼青应助来玩的采纳,获得10
4分钟前
iwsaml完成签到 ,获得积分10
4分钟前
杪夏二八完成签到 ,获得积分10
4分钟前
墨月白完成签到,获得积分10
4分钟前
文献通完成签到 ,获得积分10
4分钟前
温柔的天奇完成签到 ,获得积分10
4分钟前
墨月白发布了新的文献求助30
4分钟前
紫熊发布了新的文献求助10
4分钟前
4分钟前
5分钟前
Ca发布了新的文献求助10
5分钟前
小小完成签到 ,获得积分10
5分钟前
万能图书馆应助Ca采纳,获得10
5分钟前
Ca完成签到,获得积分10
5分钟前
紫熊完成签到,获得积分10
6分钟前
John完成签到 ,获得积分10
6分钟前
sea完成签到 ,获得积分10
6分钟前
小丸子完成签到 ,获得积分10
6分钟前
自然的含蕾完成签到 ,获得积分10
7分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792541
求助须知:如何正确求助?哪些是违规求助? 3336762
关于积分的说明 10282100
捐赠科研通 3053544
什么是DOI,文献DOI怎么找? 1675652
邀请新用户注册赠送积分活动 803629
科研通“疑难数据库(出版商)”最低求助积分说明 761468