Mapping Interictal activity in epilepsy using a hidden Markov model: A magnetoencephalography study

脑磁图 隐马尔可夫模型 发作性 癫痫 心理学 计算机科学 医学 神经科学 人工智能 脑电图
作者
Zelekha A. Seedat,Lukas Rier,Lauren E. Gascoyne,H.E. Cook,Mark W. Woolrich,Andrew J. Quinn,Timothy P. L. Roberts,Paul L. Furlong,Caren Armstrong,Kelly St. Pier,Karen J. Mullinger,Eric D. Marsh,Matthew J. Brookes,William Gaetz
出处
期刊:Human Brain Mapping [Wiley]
卷期号:44 (1): 66-81 被引量:10
标识
DOI:10.1002/hbm.26118
摘要

Abstract Epilepsy is a highly heterogeneous neurological disorder with variable etiology, manifestation, and response to treatment. It is imperative that new models of epileptiform brain activity account for this variability, to identify individual needs and allow clinicians to curate personalized care. Here, we use a hidden Markov model (HMM) to create a unique statistical model of interictal brain activity for 10 pediatric patients. We use magnetoencephalography (MEG) data acquired as part of standard clinical care for patients at the Children's Hospital of Philadelphia. These data are routinely analyzed using excess kurtosis mapping (EKM); however, as cases become more complex (extreme multifocal and/or polymorphic activity), they become harder to interpret with EKM. We assessed the performance of the HMM against EKM for three patient groups, with increasingly complicated presentation. The difference in localization of epileptogenic foci for the two methods was 7 ± 2 mm (mean ± SD over all 10 patients); and 94% ± 13% of EKM temporal markers were matched by an HMM state visit. The HMM localizes epileptogenic areas (in agreement with EKM) and provides additional information about the relationship between those areas. A key advantage over current methods is that the HMM is a data‐driven model, so the output is tuned to each individual. Finally, the model output is intuitive, allowing a user (clinician) to review the result and manually select the HMM epileptiform state, offering multiple advantages over previous methods and allowing for broader implementation of MEG epileptiform analysis in surgical decision‐making for patients with intractable epilepsy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
潇潇完成签到,获得积分10
1秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
3秒前
DIDIDI发布了新的文献求助10
3秒前
端庄千琴完成签到,获得积分10
3秒前
谨慎傲旋完成签到 ,获得积分10
4秒前
5秒前
狂野乌冬面完成签到 ,获得积分10
7秒前
7秒前
善良的剑通应助xgx984采纳,获得10
7秒前
犇犇发布了新的文献求助10
8秒前
自由珊完成签到 ,获得积分10
8秒前
沉静的友灵完成签到,获得积分10
9秒前
9秒前
11秒前
bym发布了新的文献求助10
13秒前
积极以云发布了新的文献求助10
14秒前
TT发布了新的文献求助10
14秒前
狂野世立完成签到,获得积分10
18秒前
mm完成签到,获得积分10
19秒前
hhan完成签到,获得积分10
20秒前
orixero应助飞先生采纳,获得10
20秒前
dery完成签到,获得积分10
21秒前
bym完成签到,获得积分10
22秒前
自信的寒天完成签到,获得积分10
23秒前
moonlin完成签到 ,获得积分10
24秒前
今天不学习明天变垃圾完成签到,获得积分10
26秒前
28秒前
居居侠完成签到 ,获得积分10
29秒前
小凡凡完成签到,获得积分10
32秒前
AaronDP完成签到,获得积分10
33秒前
等等发布了新的文献求助10
34秒前
34秒前
犇犇完成签到,获得积分10
37秒前
444完成签到,获得积分10
37秒前
obcx完成签到,获得积分10
37秒前
我是老大应助风趣的梦露采纳,获得10
39秒前
新楚完成签到 ,获得积分10
39秒前
沉静大有发布了新的文献求助10
39秒前
坚定的又莲完成签到 ,获得积分10
43秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780920
求助须知:如何正确求助?哪些是违规求助? 3326387
关于积分的说明 10226987
捐赠科研通 3041612
什么是DOI,文献DOI怎么找? 1669520
邀请新用户注册赠送积分活动 799081
科研通“疑难数据库(出版商)”最低求助积分说明 758734