Application of Artificial Neural Network to Nucleic Acid Analysis: Accurate Discrimination for Untypical Real-Time Fluorescence Curves With High Specificity and Sensitivity

环介导等温扩增 等温过程 生物系统 灵敏度(控制系统) 人工神经网络 核酸 底漆(化妆品) 计算机科学 人工智能 试剂 核酸检测 信号(编程语言) 模式识别(心理学) 化学 工程类 生物 电子工程 热力学 物理 生物化学 DNA 物理化学 有机化学 程序设计语言
作者
Guijun Miao,Xiaodan Jiang,Yunping Tu,Lulu Zhang,Duli Yu,Shizhi Qian,Xianbo Qiu
出处
期刊:Journal of Medical Devices-transactions of The Asme [ASM International]
卷期号:17 (1) 被引量:1
标识
DOI:10.1115/1.4056150
摘要

Abstract As a division of polymerase chain reaction (PCR), convective PCR (CPCR) is able to achieve highly efficient thermal cycling based on free thermal convection with pseudo-isothermal heating, which could be beneficial to point-of-care (POC) nucleic acid analysis. Similar to traditional PCR or isothermal amplification, due to a couple of issues, e.g., reagent, primer design, reactor, reaction dynamics, amplification status, temperature and heating condition, and other reasons, in some cases of CPCR tests, untypical real-time fluorescence curves with positive or negative tests will show up. Especially, when parts of the characteristics between untypical low-positive and negative tests are mixed together, it is difficult to discriminate between them using traditional cycle threshold (Ct) value method. To handle this issue which may occur in CPCR, traditional PCR or isothermal amplification, as an example, instead of using complicated mathematical modeling and signal processing strategy, an artificial intelligence (AI) classification method with artificial neural network (ANN) modeling is developed to improve the accuracy of nucleic acid detection. It has been proven that both the detection specificity and sensitivity can be significantly improved even with a simple ANN model. It can be estimated that the developed method based on AI modeling can be adopted to solve similar problem with PCR or isothermal amplification methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助OK了老科采纳,获得10
1秒前
赵运超发布了新的文献求助10
1秒前
张醒醒发布了新的文献求助10
1秒前
Huck完成签到,获得积分10
1秒前
obsession发布了新的文献求助10
1秒前
1秒前
Ava应助BX采纳,获得10
1秒前
花满楼发布了新的文献求助10
2秒前
LL完成签到,获得积分10
2秒前
呆萌的鼠标完成签到 ,获得积分0
2秒前
所所应助jianjiao采纳,获得10
2秒前
3秒前
3秒前
wd发布了新的文献求助10
4秒前
Hello应助MYunn采纳,获得10
4秒前
yang发布了新的文献求助10
4秒前
4秒前
qqa完成签到,获得积分10
4秒前
Kyrie完成签到,获得积分10
5秒前
坦率的寻凝完成签到,获得积分10
5秒前
5秒前
漂亮采波发布了新的文献求助10
6秒前
陈陈陈晨发布了新的文献求助10
6秒前
6秒前
yanziwu94完成签到,获得积分10
7秒前
木今完成签到,获得积分10
8秒前
尉迟冰蓝发布了新的文献求助10
9秒前
9秒前
Jasper应助lll采纳,获得10
10秒前
黯淡星完成签到,获得积分10
10秒前
zzh完成签到,获得积分10
10秒前
科研通AI5应助信念采纳,获得10
10秒前
认真的映安完成签到,获得积分10
11秒前
11秒前
飘逸的青雪完成签到,获得积分10
11秒前
追梦完成签到,获得积分10
12秒前
12秒前
百里丹珍发布了新的文献求助10
12秒前
无花果应助哈哈采纳,获得10
12秒前
13秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Knowledge management in the fashion industry 300
The world according to Garb 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816509
求助须知:如何正确求助?哪些是违规求助? 3359946
关于积分的说明 10406042
捐赠科研通 3078020
什么是DOI,文献DOI怎么找? 1690472
邀请新用户注册赠送积分活动 813786
科研通“疑难数据库(出版商)”最低求助积分说明 767857