A new nano hyperbranched β-pinene polymer: Controlled synthesis and nonviral gene delivery

原子转移自由基聚合 分散性 基因传递 共聚物 聚合物 支化(高分子化学) 材料科学 转染 纳米材料 聚合 高分子化学 化学 纳米技术 化学工程 有机化学 基因 生物化学 工程类
作者
Plínio Ribeiro Rodrigues,Xianqing Wang,Zishan Li,Yinghao Li,Jing Lyu,Wenxin Wang,Roniérik Pioli Vieira
出处
期刊:Colloids and Surfaces B: Biointerfaces [Elsevier]
卷期号:222: 113032-113032 被引量:4
标识
DOI:10.1016/j.colsurfb.2022.113032
摘要

Recently, an extensive research effort has been directed toward the improvement of nonviral transfection vectors, such as polymeric materials. The macromolecular structure of polymers has a substantial effect on their transfection efficacy. In this context, the modern advances in polymer production techniques, such as the deactivation-enhanced radical atom transfer polymerization (DE-ATRP), have been fundamental for the synthesis of controlled architecture nanomaterials. In this study, hyperbranched poly(β-pinene)-PDMAEMA-PEGDMA nanometric copolymers were synthesised at high conversion via DE-ATRP using different concentrations of β-pinene for gene delivery applications. The structural characterization and the biological performance of the materials were investigated. The copolymers' molar mass (10,434-16,438 mol l-1), dispersity, and conversion (90-95%) varied significantly with β-pinene proportion on the polymerizations. The polymer-gene complexes generated (280-110 nm) presented excellent solution stability due to the β-pinene segment on the copolymers. Gene delivery and transfection were highly dependent on the copolymer composition. The copolymers containing the highest β-pinene proportions exhibited the best results with high transfection effectivity. In conclusion, the incorporation of β-pinene in DMAEMA-PEGMA copolymer formulations is a renewable option to improve the materials' branching ratio, polyplex stability, and gene delivery performance without causing cytotoxic effects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助学术Bond采纳,获得10
刚刚
刚刚
destiny完成签到,获得积分10
2秒前
万能图书馆应助阿狸采纳,获得10
3秒前
杨启蒙完成签到,获得积分10
3秒前
Eric发布了新的文献求助80
4秒前
赘婿应助熬夜采纳,获得10
5秒前
5秒前
5秒前
顺心凡灵完成签到,获得积分10
7秒前
7秒前
昌子骞发布了新的文献求助10
8秒前
8秒前
8秒前
10秒前
10秒前
洁净的天思完成签到,获得积分10
11秒前
英俊的铭应助唐海生采纳,获得10
11秒前
12秒前
12秒前
xiaoleeyu发布了新的文献求助10
13秒前
13秒前
昌子骞完成签到,获得积分10
14秒前
DongWei95发布了新的文献求助10
16秒前
任同学完成签到,获得积分20
16秒前
CYX发布了新的文献求助10
16秒前
16秒前
cc发布了新的文献求助10
17秒前
17秒前
18秒前
18秒前
锦书难托完成签到,获得积分10
18秒前
Shannon发布了新的文献求助10
18秒前
鲤鱼梦柳完成签到,获得积分10
18秒前
19秒前
小苔藓完成签到,获得积分10
19秒前
20秒前
社恐吱吱完成签到,获得积分10
21秒前
21秒前
蝈蝈完成签到,获得积分10
21秒前
高分求助中
The three stars each: the Astrolabes and related texts 500
Revolutions 400
Diffusion in Solids: Key Topics in Materials Science and Engineering 400
Phase Diagrams: Key Topics in Materials Science and Engineering 400
Psychological Warfare Operations at Lower Echelons in the Eighth Army, July 1952 – July 1953 400
少脉山油柑叶的化学成分研究 350
微化工技术 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2442130
求助须知:如何正确求助?哪些是违规求助? 2119649
关于积分的说明 5385414
捐赠科研通 1847840
什么是DOI,文献DOI怎么找? 919395
版权声明 562008
科研通“疑难数据库(出版商)”最低求助积分说明 491758