Evaluation of tools for taxonomic classification of viruses

生物 基因组 生物分类 分类等级 病毒分类 物种丰富度 人病毒体 计算生物学 进化生物学 生态学 遗传学 基因组 基因 分类单元
作者
Elizabeth Cadenas-Castrejón,Jérôme Verleyen,Célia Boukadida,Lorena Díaz‐González,Blanca Taboada
出处
期刊:Briefings in Functional Genomics [Oxford University Press]
卷期号:22 (1): 31-41 被引量:4
标识
DOI:10.1093/bfgp/elac036
摘要

Abstract Viruses are the most abundant infectious agents on earth, and they infect living organisms such as bacteria, plants and animals, among others. They play an important role in the balance of different ecosystems by modulating microbial populations. In humans, they are responsible for some common diseases and may cause severe illnesses. Viral metagenomic studies have become essential and offer the possibility to understand and extend the knowledge of virus diversity and functionality. For these approaches, an essential step is the classification of viral sequences. In this work, 11 taxonomic classification tools were compared by analysing their performances, in terms of sensitivity and precision, to classify reads at the species and family levels using the same (viral and nonviral) datasets and evaluation metrics, as well as their processing times and memory requirements. The results showed that factors such as richness (numbers of viral species in samples), taxonomic level in the classification and read length influence tool performance. High values of viral richness in samples decreased the performances of most tools. Additionally, the classifications were better at higher taxonomic levels, such as families, compared to lower taxonomic levels, such as species, and were more evident in short reads. The results also indicated that BLAST and Kraken2 were the best tools for classifying all types of reads, while FastViromeExplorer and VirusFinder were only good when used for long reads and Centrifuge, DIAMOND, and One Codex when used for short reads. Regarding nonviral datasets (human and bacterial), all tools correctly classified them as nonviral.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕千万发布了新的文献求助10
刚刚
1秒前
Lucas应助momo采纳,获得10
1秒前
拼搏盼山完成签到 ,获得积分10
1秒前
快乐人杰完成签到,获得积分10
1秒前
1秒前
2秒前
风趣白晴发布了新的文献求助10
2秒前
Tiannn发布了新的文献求助10
3秒前
3秒前
小刺猬发布了新的文献求助10
3秒前
暗中讨饭发布了新的文献求助10
3秒前
666发布了新的文献求助10
3秒前
美好幻灵完成签到,获得积分20
4秒前
4秒前
梨炒栗子完成签到,获得积分10
5秒前
5秒前
Godzilla发布了新的文献求助10
5秒前
Akim应助研友_84W7RZ采纳,获得10
6秒前
夏侯一鸣发布了新的文献求助10
6秒前
iptwang完成签到,获得积分10
6秒前
炖地瓜完成签到 ,获得积分10
6秒前
7秒前
文昊完成签到,获得积分20
7秒前
7秒前
梁自豪完成签到,获得积分20
7秒前
m1发布了新的文献求助10
8秒前
熊宜浓发布了新的文献求助10
8秒前
越红完成签到,获得积分10
8秒前
啦啦啦发布了新的文献求助20
8秒前
wusuowei发布了新的文献求助10
8秒前
9秒前
song发布了新的文献求助10
9秒前
orixero应助慕千万采纳,获得10
9秒前
six发布了新的文献求助10
9秒前
科研通AI5应助海棠淡长安采纳,获得10
10秒前
花开富贵完成签到,获得积分10
10秒前
慕青应助一汪采纳,获得10
10秒前
Willy完成签到,获得积分10
11秒前
梁自豪发布了新的文献求助10
12秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Fatigue of Materials and Structures 260
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
An Integrated Solution for Application of Next-Generation Sequencing in Newborn Screening 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831932
求助须知:如何正确求助?哪些是违规求助? 3374210
关于积分的说明 10483852
捐赠科研通 3094099
什么是DOI,文献DOI怎么找? 1703329
邀请新用户注册赠送积分活动 819378
科研通“疑难数据库(出版商)”最低求助积分说明 771463