亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A comprehensive study of non-adaptive and residual-based adaptive sampling for physics-informed neural networks

采样(信号处理) 自适应采样 残余物 算法 人工神经网络 计算机科学 数学 统计物理学 应用数学 物理 人工智能 统计 蒙特卡罗方法 电信 探测器
作者
Chenxi Wu,Min Zhu,Qinyang Tan,Yadhu Kartha,Lu Lu
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:403: 115671-115671 被引量:445
标识
DOI:10.1016/j.cma.2022.115671
摘要

Physics-informed neural networks (PINNs) have shown to be an effective tool for solving forward and inverse problems of partial differential equations (PDEs). PINNs embed the PDEs into the loss of the neural network, and this PDE loss is evaluated at a set of scattered residual points. The distribution of these points are highly important to the performance of PINNs. However, in the existing studies on PINNs, only a few simple residual point sampling methods have mainly been used. Here, we present a comprehensive study of two categories of sampling: non-adaptive uniform sampling and adaptive nonuniform sampling. We consider six uniform sampling, including (1) equispaced uniform grid, (2) uniformly random sampling, (3) Latin hypercube sampling, (4) Halton sequence, (5) Hammersley sequence, and (6) Sobol sequence. We also consider a resampling strategy for uniform sampling. To improve the sampling efficiency and the accuracy of PINNs, we propose two new residual-based adaptive sampling methods: residual-based adaptive distribution (RAD) and residual-based adaptive refinement with distribution (RAR-D), which dynamically improve the distribution of residual points based on the PDE residuals during training. Hence, we have considered a total of 10 different sampling methods, including six non-adaptive uniform sampling, uniform sampling with resampling, two proposed adaptive sampling, and an existing adaptive sampling. We extensively tested the performance of these sampling methods for four forward problems and two inverse problems in many setups. Our numerical results presented in this study are summarized from more than 6000 simulations of PINNs. We show that the proposed adaptive sampling methods of RAD and RAR-D significantly improve the accuracy of PINNs with fewer residual points. The results obtained in this study can also be used as a practical guideline in choosing sampling methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NEKO发布了新的文献求助10
1秒前
lucky完成签到 ,获得积分10
4秒前
科研通AI2S应助一个西藏采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
27秒前
沉默寻凝完成签到,获得积分10
32秒前
Akim应助NEKO采纳,获得10
52秒前
liuerlong发布了新的文献求助10
1分钟前
1分钟前
NEKO发布了新的文献求助10
1分钟前
1分钟前
yhw发布了新的文献求助10
1分钟前
殷勤的秋完成签到 ,获得积分10
1分钟前
共享精神应助NEKO采纳,获得10
1分钟前
林利芳完成签到 ,获得积分0
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
NEKO发布了新的文献求助10
2分钟前
2分钟前
2分钟前
渥鸡蛋发布了新的文献求助10
2分钟前
liuerlong发布了新的文献求助10
3分钟前
3分钟前
SciGPT应助NEKO采纳,获得10
3分钟前
大模型应助渥鸡蛋采纳,获得10
3分钟前
3分钟前
张晶凯完成签到,获得积分10
3分钟前
张晶凯发布了新的文献求助10
3分钟前
3分钟前
潘白玉完成签到 ,获得积分10
3分钟前
NEKO发布了新的文献求助10
3分钟前
88C真是太神奇啦完成签到,获得积分10
3分钟前
3分钟前
3分钟前
香蕉觅云应助NEKO采纳,获得10
4分钟前
星辰大海应助科研通管家采纳,获得10
4分钟前
bkagyin应助科研通管家采纳,获得10
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603300
求助须知:如何正确求助?哪些是违规求助? 4688366
关于积分的说明 14853453
捐赠科研通 4689594
什么是DOI,文献DOI怎么找? 2540611
邀请新用户注册赠送积分活动 1506982
关于科研通互助平台的介绍 1471608