亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A comprehensive study of non-adaptive and residual-based adaptive sampling for physics-informed neural networks

采样(信号处理) 自适应采样 残余物 算法 人工神经网络 计算机科学 数学 统计物理学 应用数学 物理 人工智能 统计 蒙特卡罗方法 电信 探测器
作者
Chenxi Wu,Min Zhu,Qinyang Tan,Yadhu Kartha,Lu Lu
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier BV]
卷期号:403: 115671-115671 被引量:292
标识
DOI:10.1016/j.cma.2022.115671
摘要

Physics-informed neural networks (PINNs) have shown to be an effective tool for solving forward and inverse problems of partial differential equations (PDEs). PINNs embed the PDEs into the loss of the neural network, and this PDE loss is evaluated at a set of scattered residual points. The distribution of these points are highly important to the performance of PINNs. However, in the existing studies on PINNs, only a few simple residual point sampling methods have mainly been used. Here, we present a comprehensive study of two categories of sampling: non-adaptive uniform sampling and adaptive nonuniform sampling. We consider six uniform sampling, including (1) equispaced uniform grid, (2) uniformly random sampling, (3) Latin hypercube sampling, (4) Halton sequence, (5) Hammersley sequence, and (6) Sobol sequence. We also consider a resampling strategy for uniform sampling. To improve the sampling efficiency and the accuracy of PINNs, we propose two new residual-based adaptive sampling methods: residual-based adaptive distribution (RAD) and residual-based adaptive refinement with distribution (RAR-D), which dynamically improve the distribution of residual points based on the PDE residuals during training. Hence, we have considered a total of 10 different sampling methods, including six non-adaptive uniform sampling, uniform sampling with resampling, two proposed adaptive sampling, and an existing adaptive sampling. We extensively tested the performance of these sampling methods for four forward problems and two inverse problems in many setups. Our numerical results presented in this study are summarized from more than 6000 simulations of PINNs. We show that the proposed adaptive sampling methods of RAD and RAR-D significantly improve the accuracy of PINNs with fewer residual points. The results obtained in this study can also be used as a practical guideline in choosing sampling methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小卢完成签到,获得积分10
3秒前
李爱国应助zhu96114748采纳,获得10
4秒前
yyy完成签到 ,获得积分10
5秒前
卡皮巴拉完成签到,获得积分10
8秒前
现在到未来完成签到,获得积分10
8秒前
小曾完成签到,获得积分10
13秒前
14秒前
PPD发布了新的文献求助10
19秒前
20秒前
小卢发布了新的文献求助10
33秒前
xixiazhiwang完成签到,获得积分10
34秒前
jimmy_bytheway完成签到,获得积分0
40秒前
追寻夜香完成签到 ,获得积分10
42秒前
烨枫晨曦完成签到,获得积分10
44秒前
可爱易文完成签到 ,获得积分10
44秒前
科研通AI2S应助科研通管家采纳,获得10
46秒前
华仔应助科研通管家采纳,获得10
46秒前
英姑应助科研通管家采纳,获得10
46秒前
吕半鬼完成签到,获得积分0
52秒前
余十一完成签到 ,获得积分10
52秒前
果冻橙完成签到,获得积分10
56秒前
xiawanren00完成签到,获得积分10
1分钟前
小王完成签到 ,获得积分10
1分钟前
科研通AI5应助光亮静槐采纳,获得30
1分钟前
风中的觅儿完成签到,获得积分10
1分钟前
1分钟前
水若琳完成签到 ,获得积分10
1分钟前
zhu96114748发布了新的文献求助10
1分钟前
zhu96114748完成签到,获得积分10
1分钟前
Hello应助欢喜的怜菡采纳,获得10
1分钟前
搜集达人应助zhu96114748采纳,获得10
1分钟前
MeiLing完成签到,获得积分10
1分钟前
1分钟前
李爱国应助南与晚霞采纳,获得10
1分钟前
2分钟前
体贴花卷发布了新的文献求助10
2分钟前
李健的小迷弟应助ccc采纳,获得10
2分钟前
shenghaowen发布了新的文献求助10
2分钟前
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
血液中补体及巨噬细胞对大肠杆菌噬菌体PNJ1809-09活性的影响 500
Methodology for the Human Sciences 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
System of Systems Modeling and Analysis 400
Simulation of High-NA EUV Lithography 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4328946
求助须知:如何正确求助?哪些是违规求助? 3842299
关于积分的说明 12007157
捐赠科研通 3483084
什么是DOI,文献DOI怎么找? 1910959
邀请新用户注册赠送积分活动 955512
科研通“疑难数据库(出版商)”最低求助积分说明 856314