Thermal transports of 2D phosphorous carbides by machine learning molecular dynamics simulations

分子动力学 热的 碳化物 材料科学 动力学(音乐) 化学物理 热力学 复合材料 物理 计算化学 化学 声学
作者
Chenyang Cao,Shuo Cao,Yuan-Xu Zhu,Haikuan Dong,Yanzhou Wang,Ping Qian
出处
期刊:International Journal of Heat and Mass Transfer [Elsevier BV]
卷期号:224: 125359-125359 被引量:3
标识
DOI:10.1016/j.ijheatmasstransfer.2024.125359
摘要

Carbon phosphide is a newly discovered two-dimensional semiconductor material which wrinkles and has a significant carrier mobility. Due to lack an accurate force field, the use of molecular dynamics to study its phonon-dominated thermal conductivity which lead to inaccurate results. At present, the use of machine learning to construct a high-precision force field has become the mainstream research method to solve this problem. The main work of this study is to construct a comprehensive training sets for Phosphorus-Doped Graphene (PCn) (n = 3, 5, 6) and to use the fitted potential to calculate the related thermal properties. The research found that (PC5) exhibited anisotropic behavior, with a thermal conductivity of 106.6 Wm−1 K−1 in the y-direction and 63.6 Wm−1 K−1 in the x-direction. In comparison, (PC6) and (PC3) showed isotropic behavior, with thermal conductivity of approximately 104 Wm−1 K−1 and 76.83 Wm−1 K−1, respectively. Compared to monolayer graphene, the lower thermal conductivity of PCn is mainly attributed to phonon-phonon scattering effects, which are limited by the regular wrinkled structure. Additionally, low-frequency phonon have been found to have a significant impact on the thermal performance of PCn. Furthermore, we investigated the influence of uniaxial strain on the PC6 and observed an increase in the thermal conductivity with increasing strain. This study used key computational and analytical techniques, including phonon dispersion relations, homogeneous nonequilibrium molecular dynamics method, spectral thermal conductivity analysis. These findings provide a theoretical basis for understanding the thermal transport properties of PCn and will guide its potential applications value.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zy123发布了新的文献求助10
刚刚
刚刚
YY88687321完成签到 ,获得积分20
3秒前
五更夜发布了新的文献求助10
4秒前
琪3043完成签到,获得积分20
4秒前
OFish完成签到,获得积分10
5秒前
5秒前
山东老铁发布了新的文献求助10
6秒前
hj456完成签到,获得积分10
6秒前
lhn完成签到,获得积分20
7秒前
9秒前
13秒前
王大炮完成签到,获得积分10
14秒前
14秒前
凯当以慷发布了新的文献求助10
15秒前
陶陶发布了新的文献求助10
15秒前
zy123完成签到,获得积分10
16秒前
16秒前
qqqqq完成签到,获得积分10
16秒前
me发布了新的文献求助30
17秒前
天天快乐应助acadedog采纳,获得10
18秒前
科研通AI5应助都是采纳,获得10
18秒前
ZHN发布了新的文献求助10
19秒前
小蚊子发布了新的文献求助10
21秒前
21秒前
21秒前
凯当以慷完成签到,获得积分10
23秒前
mumu发布了新的文献求助10
24秒前
赘婿应助快乐老佳采纳,获得10
24秒前
陶陶完成签到,获得积分20
25秒前
大气元彤完成签到 ,获得积分10
25秒前
小蚊子完成签到,获得积分10
26秒前
27秒前
天啦噜完成签到 ,获得积分10
28秒前
29秒前
知白完成签到 ,获得积分10
29秒前
超帅怜阳完成签到,获得积分10
29秒前
自觉凌蝶完成签到 ,获得积分10
30秒前
ccc完成签到,获得积分10
30秒前
斯文败类应助山东老铁采纳,获得10
31秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816810
求助须知:如何正确求助?哪些是违规求助? 3360247
关于积分的说明 10407179
捐赠科研通 3078205
什么是DOI,文献DOI怎么找? 1690660
邀请新用户注册赠送积分活动 813983
科研通“疑难数据库(出版商)”最低求助积分说明 767924