Exploring non-invasive precision treatment in non-small cell lung cancer patients through deep learning radiomics across imaging features and molecular phenotypes

无线电技术 深度学习 克拉斯 放射基因组学 人工智能 医学 可解释性 特征(语言学) ROS1型 精密医学 分子成像 表型 机器学习 肺癌 癌症 计算机科学 病理 腺癌 内科学 基因 生物 结直肠癌 生物技术 体内 哲学 生物化学 语言学
作者
Xingping Zhang,Guijuan Zhang,Xingting Qiu,Jiao Yin,Wenjun Tan,Xiaoxia Yin,Hong Yang,Hua Wang,Yanchun Zhang
出处
期刊:Biomarker research [Springer Nature]
卷期号:12 (1) 被引量:17
标识
DOI:10.1186/s40364-024-00561-5
摘要

Abstract Background Accurate prediction of tumor molecular alterations is vital for optimizing cancer treatment. Traditional tissue-based approaches encounter limitations due to invasiveness, heterogeneity, and molecular dynamic changes. We aim to develop and validate a deep learning radiomics framework to obtain imaging features that reflect various molecular changes, aiding first-line treatment decisions for cancer patients. Methods We conducted a retrospective study involving 508 NSCLC patients from three institutions, incorporating CT images and clinicopathologic data. Two radiomic scores and a deep network feature were constructed on three data sources in the 3D tumor region. Using these features, we developed and validated the ‘Deep-RadScore,’ a deep learning radiomics model to predict prognostic factors, gene mutations, and immune molecule expression levels. Findings The Deep-RadScore exhibits strong discrimination for tumor molecular features. In the independent test cohort, it achieved impressive AUCs: 0.889 for lymphovascular invasion, 0.903 for pleural invasion, 0.894 for T staging; 0.884 for EGFR and ALK, 0.896 for KRAS and PIK3CA, 0.889 for TP53, 0.895 for ROS1; and 0.893 for PD-1/PD-L1. Fusing features yielded optimal predictive power, surpassing any single imaging feature. Correlation and interpretability analyses confirmed the effectiveness of customized deep network features in capturing additional imaging phenotypes beyond known radiomic features. Interpretation This proof-of-concept framework demonstrates that new biomarkers across imaging features and molecular phenotypes can be provided by fusing radiomic features and deep network features from multiple data sources. This holds the potential to offer valuable insights for radiological phenotyping in characterizing diverse tumor molecular alterations, thereby advancing the pursuit of non-invasive personalized treatment for NSCLC patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sunny完成签到,获得积分10
刚刚
Yezo完成签到,获得积分10
刚刚
共享精神应助压缩采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
一般路过人应助Youdge采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
xiaomage发布了新的文献求助10
5秒前
岂有此李完成签到,获得积分10
6秒前
香蕉觅云应助LBZ采纳,获得10
6秒前
Bokken完成签到,获得积分10
6秒前
莫菲特完成签到,获得积分10
7秒前
7秒前
CipherSage应助翟思慧采纳,获得10
10秒前
ding应助优美紫槐采纳,获得10
10秒前
风清扬发布了新的文献求助10
10秒前
11秒前
整齐的雨寒完成签到,获得积分10
11秒前
Chief完成签到,获得积分0
11秒前
王安娜完成签到 ,获得积分10
11秒前
hnxxangel发布了新的文献求助10
12秒前
12秒前
xiezizai完成签到,获得积分10
12秒前
shiizii应助江思可采纳,获得30
12秒前
shen5920完成签到,获得积分10
13秒前
13秒前
研晓晓发布了新的文献求助10
13秒前
机智的访云完成签到,获得积分10
14秒前
15秒前
美好斓发布了新的文献求助10
15秒前
16秒前
16秒前
闫霄溯发布了新的文献求助10
16秒前
17秒前
kelly9110完成签到,获得积分10
17秒前
17秒前
烤地瓜的z完成签到,获得积分10
17秒前
19秒前
压缩发布了新的文献求助10
19秒前
安静夜梅发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5712031
求助须知:如何正确求助?哪些是违规求助? 5207432
关于积分的说明 15266074
捐赠科研通 4864074
什么是DOI,文献DOI怎么找? 2611194
邀请新用户注册赠送积分活动 1561461
关于科研通互助平台的介绍 1518793