A machine learning radiomics model based on bpMRI to predict bone metastasis in newly diagnosed prostate cancer patients.

接收机工作特性 医学 逻辑回归 人工智能 队列 无线电技术 磁共振成像 随机森林 骨转移 机器学习 前列腺癌 支持向量机 朴素贝叶斯分类器 放射科 计算机科学 癌症 内科学
作者
Song Xinyang,Shuang Zhang,Shen Tianci,Xiangyu Hu,Yangyang Wang,Du Mengying,Jingran Zhou,Feng Yang
出处
期刊:Magnetic Resonance Imaging [Elsevier BV]
卷期号:107: 15-23 被引量:3
标识
DOI:10.1016/j.mri.2023.12.009
摘要

To develop and evaluate a machine learning radiomics model based on bpMRI to predict bone metastasis (BM) status in newly diagnosed prostate cancer (PCa) patients. We retrospectively analyzed biparametric magnetic resonance imaging MRI (bpMRI) scans of PCa patients from multiple centers between January 2016 and October 2021. 348 PCa patients were recruited from two institutions for this study. The first institution contributed 284 patients, stratified and randomly divided into training and internal validation cohorts at a 7:3 ratio. The remaining 64 patients were sourced from the second institution and comprised the external validation cohort. Radiomics features were extracted from axial T2-weighted imaging (T2WI) and diffusion-weighted imaging (DWI) tumor regions. We developed the radiomics prediction model for BM in the training cohort and validated it in the internal and external validation cohorts. As a benchmark, we trained the logistic regression model with lasso feature reduction (LFR-LRM) in the training cohort and further compared it with Naive Bayes, eXtreme Gradient Boosting (XGboost), Random Forest (RF), GBDT, SVM, Adaboost, and KNN algorithms and validated in both the internal and external cohorts. The performance of several predictive models was assessed by receiver operating characteristic (ROC). The LFR-LRM model achieved an area under the receiver operating characteristic curve (AUC) of 0.89 (95% CI: 0.822–0.974) and an accuracy of 0.828 (95% CI: 0.713–0.911). The AUC and accuracy in external validation were 0.866 (95% CI: 0.784–0.948) and 0.769 (95% CI: 0.648–0.864), respectively. The RF and XGBoost models outperformed the LFR-LRM, with AUCs of 0.907 (95% CI: 0.863–0.949) and 0.928 (95% CI: 0.882–0.974) and accuracies of 0.831 (95% CI: 0.727–0.907) and 0.884 (95% CI: 0.792–0.946). External validation for these models yielded AUCs and accuracies of 0.911 (95% CI: 0.861–0.966), 0.921 (95% CI: 0.889–0.953), and 0.846 (95% CI: 0.735–0.923) and 0.876 (95% CI: 0.771–0.945), respectively. The XGboost machine learning model is more accurate than LFR-LRM for predicting BM in patients with newly confirmed PCa.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
论文多多完成签到,获得积分10
1秒前
科研小狗完成签到,获得积分10
1秒前
EMM完成签到 ,获得积分10
2秒前
曲小晴完成签到,获得积分10
2秒前
AA完成签到,获得积分10
3秒前
lq完成签到 ,获得积分10
4秒前
万能图书馆应助xiaoxia采纳,获得10
4秒前
banban完成签到,获得积分10
4秒前
看文献的高光谱完成签到,获得积分10
4秒前
儒雅的豁完成签到,获得积分10
4秒前
道交法完成签到,获得积分10
5秒前
5秒前
sk夏冰完成签到 ,获得积分10
5秒前
6秒前
化白应助陈椅子的求学采纳,获得30
7秒前
8秒前
大胖小子完成签到,获得积分10
8秒前
yu完成签到,获得积分10
8秒前
9秒前
欣喜若灵发布了新的文献求助10
9秒前
康康发布了新的文献求助10
9秒前
英俊的铭应助科研通管家采纳,获得10
10秒前
小马甲应助科研通管家采纳,获得10
10秒前
lkjh完成签到 ,获得积分10
10秒前
10秒前
深情安青应助科研通管家采纳,获得10
10秒前
FUNG完成签到 ,获得积分10
10秒前
年轻人应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
852应助科研通管家采纳,获得10
10秒前
年轻人应助科研通管家采纳,获得10
10秒前
顾矜应助科研通管家采纳,获得10
10秒前
思源应助科研通管家采纳,获得10
10秒前
天天快乐应助科研通管家采纳,获得10
10秒前
11秒前
lll应助科研通管家采纳,获得10
11秒前
Hello应助科研通管家采纳,获得10
11秒前
儒雅的菠萝吹雪完成签到,获得积分10
11秒前
粥可温完成签到,获得积分10
11秒前
11秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Materials for Green Hydrogen Production 2026-2036: Technologies, Players, Forecasts 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4061661
求助须知:如何正确求助?哪些是违规求助? 3600275
关于积分的说明 11433299
捐赠科研通 3323815
什么是DOI,文献DOI怎么找? 1827483
邀请新用户注册赠送积分活动 897954
科研通“疑难数据库(出版商)”最低求助积分说明 818774