已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A machine learning radiomics model based on bpMRI to predict bone metastasis in newly diagnosed prostate cancer patients.

接收机工作特性 医学 逻辑回归 人工智能 队列 无线电技术 磁共振成像 随机森林 骨转移 机器学习 前列腺癌 支持向量机 朴素贝叶斯分类器 放射科 计算机科学 癌症 内科学
作者
Song Xinyang,Shuang Zhang,Shen Tianci,Xiangyu Hu,Yangyang Wang,Du Mengying,Jingran Zhou,Feng Yang
出处
期刊:Magnetic Resonance Imaging [Elsevier]
卷期号:107: 15-23 被引量:3
标识
DOI:10.1016/j.mri.2023.12.009
摘要

To develop and evaluate a machine learning radiomics model based on bpMRI to predict bone metastasis (BM) status in newly diagnosed prostate cancer (PCa) patients. We retrospectively analyzed biparametric magnetic resonance imaging MRI (bpMRI) scans of PCa patients from multiple centers between January 2016 and October 2021. 348 PCa patients were recruited from two institutions for this study. The first institution contributed 284 patients, stratified and randomly divided into training and internal validation cohorts at a 7:3 ratio. The remaining 64 patients were sourced from the second institution and comprised the external validation cohort. Radiomics features were extracted from axial T2-weighted imaging (T2WI) and diffusion-weighted imaging (DWI) tumor regions. We developed the radiomics prediction model for BM in the training cohort and validated it in the internal and external validation cohorts. As a benchmark, we trained the logistic regression model with lasso feature reduction (LFR-LRM) in the training cohort and further compared it with Naive Bayes, eXtreme Gradient Boosting (XGboost), Random Forest (RF), GBDT, SVM, Adaboost, and KNN algorithms and validated in both the internal and external cohorts. The performance of several predictive models was assessed by receiver operating characteristic (ROC). The LFR-LRM model achieved an area under the receiver operating characteristic curve (AUC) of 0.89 (95% CI: 0.822–0.974) and an accuracy of 0.828 (95% CI: 0.713–0.911). The AUC and accuracy in external validation were 0.866 (95% CI: 0.784–0.948) and 0.769 (95% CI: 0.648–0.864), respectively. The RF and XGBoost models outperformed the LFR-LRM, with AUCs of 0.907 (95% CI: 0.863–0.949) and 0.928 (95% CI: 0.882–0.974) and accuracies of 0.831 (95% CI: 0.727–0.907) and 0.884 (95% CI: 0.792–0.946). External validation for these models yielded AUCs and accuracies of 0.911 (95% CI: 0.861–0.966), 0.921 (95% CI: 0.889–0.953), and 0.846 (95% CI: 0.735–0.923) and 0.876 (95% CI: 0.771–0.945), respectively. The XGboost machine learning model is more accurate than LFR-LRM for predicting BM in patients with newly confirmed PCa.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杀鸡发布了新的文献求助10
4秒前
机灵芷文发布了新的文献求助10
4秒前
5秒前
5秒前
7秒前
井盖发发布了新的文献求助10
7秒前
一只大鸭梨完成签到,获得积分10
8秒前
思源应助gucci采纳,获得10
9秒前
9秒前
李健的粉丝团团长应助wei采纳,获得10
9秒前
LY发布了新的文献求助10
9秒前
11发布了新的文献求助10
11秒前
大个应助接受所有饼干采纳,获得10
12秒前
13秒前
称心剑鬼发布了新的文献求助10
14秒前
14秒前
Lukomere发布了新的文献求助10
15秒前
楼醉山完成签到,获得积分10
17秒前
可爱的函函应助井盖发采纳,获得10
19秒前
caixukun发布了新的文献求助10
20秒前
猫小乐C完成签到,获得积分10
20秒前
guojingjing发布了新的文献求助10
21秒前
定位心海的锚完成签到,获得积分10
22秒前
称心剑鬼完成签到,获得积分10
23秒前
zhou269完成签到,获得积分10
23秒前
jinan完成签到,获得积分10
24秒前
25秒前
28秒前
jinan发布了新的文献求助10
29秒前
Criminology34举报饼饼求助涉嫌违规
29秒前
29秒前
30秒前
30秒前
天天快乐应助keke采纳,获得10
34秒前
科研通AI6应助Lyon采纳,获得10
35秒前
36秒前
汉堡包应助如意修洁采纳,获得10
37秒前
gucci发布了新的文献求助10
37秒前
39秒前
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5355874
求助须知:如何正确求助?哪些是违规求助? 4487717
关于积分的说明 13970886
捐赠科研通 4388491
什么是DOI,文献DOI怎么找? 2411104
邀请新用户注册赠送积分活动 1403650
关于科研通互助平台的介绍 1377279