Enhanced ResNet-151-based fused features for optimized Bi-LSTM-DNN-aided handwritten character and digits recognition

计算机科学 模式识别(心理学) 人工智能 卷积神经网络 特征提取 水准点(测量) 特征(语言学) 性格(数学) 光学字符识别 数据集 边距(机器学习) 集合(抽象数据类型) 特征向量 智能字识别 语音识别 智能字符识别 字符识别 图像(数学) 数学 机器学习 语言学 哲学 几何学 大地测量学 程序设计语言 地理
作者
Srinivasa Rao N,C. Nelson Kennedy Babu
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:244: 122860-122860 被引量:4
标识
DOI:10.1016/j.eswa.2023.122860
摘要

Optical Character Recognition (OCR) is a method to convert a scanned photo of“handwritten character recognition (HCR) or printed character recognition (PCR)” into a form of digital text. HCR is a version of OCR, which is remarkably modeled to identify handwritten text, while PCR aims at printed text identification. The identification of handwritten characters and digits is more complicated as compared to PCR because of the diversities in human writing styles, stokes, thickness, and curves of characters. Similarly, achievements in several computer vision tasks consider the Convolutional Neural Networks (CNN) to give an end-to-end solution for HCR with huge success. However, the process of significant feature learning for the identification of images is complicated with little data. Hence, this paper aims to develop a new handwritten character and digit recognition model with the incorporation of a deep learning strategy. Initially, the data related to Indian languages are collected from the standard benchmark datasets. Then, the collected data are given into the feature extraction phase 1, where the ResNet 151 is used for extracting the feature set 1. Similarly, the data gathered are considered in the feature extraction phase 2, where the Optimal Ensemble Pattern extraction approach is developed with Local Binary Pattern (LBP), Local Gradient Patterns (LGP), Local Tetra Pattern (LTrP), and Local Vector Pattern (LVP) for extracting the significant patterns from the language data. These extracted patterns are given into the ResNet 151 for getting the feature set 2. Here, the features from ResNet 151 get optimized with the enhanced optimization algorithm with Fitness-based Sail Fish Optimizer (F-SFO). The obtained feature set 1 and optimal feature set 2 are concatenated for performing final recognition. At last, the HCR is done with the help of developed Bi-LSTM-DNN to achieve the enhanced and accurate recognition of handwritten characters of the Indian languages. The performances of character recognition are further improved with the parameter optimization in Bi-LSTM-DNN with the same enhanced F-SFO. Overall result analysis, the accuracy of the designed method attains 95.12%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助德芙纵向丝滑采纳,获得10
刚刚
无私的含海完成签到,获得积分10
1秒前
记不清发布了新的文献求助10
2秒前
蓝色发布了新的文献求助10
3秒前
3秒前
爆米花应助xiaoyue采纳,获得10
5秒前
8秒前
MX应助huyang采纳,获得10
8秒前
滴滴滴发布了新的文献求助10
9秒前
德芙纵向丝滑完成签到,获得积分20
11秒前
Zz完成签到,获得积分10
11秒前
MAD666发布了新的文献求助30
13秒前
14秒前
完美世界应助江峰采纳,获得10
14秒前
宁异勿同完成签到,获得积分10
15秒前
15秒前
16秒前
斯文的难破完成签到 ,获得积分10
18秒前
Hz发布了新的文献求助10
19秒前
19秒前
20秒前
蓝色发布了新的文献求助10
21秒前
23秒前
尊敬的凝丹完成签到 ,获得积分10
24秒前
liuhongcan完成签到,获得积分10
24秒前
zhang发布了新的文献求助10
25秒前
25秒前
MAD666完成签到,获得积分10
27秒前
医路无悔发布了新的文献求助20
28秒前
蓝色发布了新的文献求助10
35秒前
斯人如机完成签到,获得积分10
36秒前
37秒前
球球尧伞耳完成签到,获得积分10
38秒前
ZYC007完成签到,获得积分10
38秒前
曾经蛋挞完成签到,获得积分20
39秒前
Yogita完成签到,获得积分10
39秒前
小猪猪饲养员完成签到,获得积分10
40秒前
曾经蛋挞发布了新的文献求助10
42秒前
一个舒发布了新的文献求助10
43秒前
44秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799095
求助须知:如何正确求助?哪些是违规求助? 3344848
关于积分的说明 10321650
捐赠科研通 3061268
什么是DOI,文献DOI怎么找? 1680100
邀请新用户注册赠送积分活动 806904
科研通“疑难数据库(出版商)”最低求助积分说明 763445