亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

HCLR-Net: Hybrid Contrastive Learning Regularization with Locally Randomized Perturbation for Underwater Image Enhancement

人工智能 水下 模式识别(心理学) 数学 正规化(语言学) 计算机科学 计算机视觉 地理 考古
作者
Jingchun Zhou,Jiaming Sun,Chongyi Li,Qiuping Jiang,Man Zhou,Kin‐Man Lam,Weishi Zhang,Xianping Fu
出处
期刊:International Journal of Computer Vision [Springer Nature]
卷期号:132 (10): 4132-4156 被引量:93
标识
DOI:10.1007/s11263-024-01987-y
摘要

Underwater image enhancement presents a significant challenge due to the complex and diverse underwater environments that result in severe degradation phenomena such as light absorption, scattering, and color distortion. More importantly, obtaining paired training data for these scenarios is a challenging task, which further hinders the generalization performance of enhancement models. To address these issues, we propose a novel approach, the Hybrid Contrastive Learning Regularization (HCLR-Net). Our method is built upon a distinctive hybrid contrastive learning regularization strategy that incorporates a unique methodology for constructing negative samples. This approach enables the network to develop a more robust sample distribution. Notably, we utilize non-paired data for both positive and negative samples, with negative samples are innovatively reconstructed using local patch perturbations. This strategy overcomes the constraints of relying solely on paired data, boosting the model's potential for generalization. The HCLR-Net also incorporates an Adaptive Hybrid Attention module and a Detail Repair Branch for effective feature extraction and texture detail restoration, respectively. Comprehensive experiments demonstrate the superiority of our method, which shows substantial improvements over several state-of-the-art methods in terms of quantitative metrics, significantly enhances the visual quality of underwater images, establishing its innovative and practical applicability. Our code is available at: https://github.com/zhoujingchun03/HCLR-Net .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Criminology34应助科研通管家采纳,获得10
1秒前
3秒前
量子星尘发布了新的文献求助10
7秒前
邺城寒水完成签到 ,获得积分10
9秒前
CodeCraft应助oshunne采纳,获得10
15秒前
灵巧的代芙完成签到 ,获得积分10
20秒前
34秒前
研友_ZGRqKn发布了新的文献求助10
40秒前
研友_ZGRqKn完成签到,获得积分10
51秒前
wanwan524完成签到 ,获得积分10
1分钟前
CodeCraft应助phd采纳,获得10
1分钟前
充电宝应助phd采纳,获得10
1分钟前
1分钟前
sailingluwl完成签到,获得积分10
1分钟前
阿泽发布了新的文献求助10
1分钟前
大个应助phd采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
2分钟前
Una完成签到,获得积分10
2分钟前
矮小的向雪完成签到 ,获得积分10
2分钟前
phd发布了新的文献求助10
2分钟前
花开富贵完成签到 ,获得积分10
2分钟前
2分钟前
lei发布了新的文献求助10
2分钟前
Kevin完成签到,获得积分10
2分钟前
3分钟前
3分钟前
3分钟前
rose发布了新的文献求助20
3分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
lsl应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644764
求助须知:如何正确求助?哪些是违规求助? 4765318
关于积分的说明 15025565
捐赠科研通 4803089
什么是DOI,文献DOI怎么找? 2567925
邀请新用户注册赠送积分活动 1525479
关于科研通互助平台的介绍 1485004