Enhanced reversible hydrogen storage properties of wrinkled graphene microflowers confined LiBH4 system with high volumetric hydrogen storage capacity

脱氢 石墨烯 氢气储存 材料科学 化学工程 储能 催化作用 限制 纳米技术 化学 复合材料 有机化学 热力学 功率(物理) 工程类 物理 机械工程 合金
作者
Zhenglong Li,Kaicheng Xian,Hao Chen,Mingxia Gao,Shanqing Qu,Meihong Wu,Yaxiong Yang,Wenping Sun,Jiabin Xi,Yongfeng Liu,Xin Zhang,Hongge Pan
出处
期刊:Materials Reports: Energy [Elsevier]
卷期号:: 100249-100249
标识
DOI:10.1016/j.matre.2024.100249
摘要

LiBH4 with high hydrogen storage density, is regarded as one of the most promising hydrogen storage materials. Nevertheless, it suffers from high dehydrogenation temperature and poor reversibility for practical use. Nanoconfinement is effective in achieving low dehydrogenation temperature and favorable reversibility. Besides, graphene can serve as supporting materials for LiBH4 catalysts and also destabilize LiBH4 via interfacial reaction. However, graphene has never been used alone as a frame material for nanoconfining LiBH4. In this study, graphene microflowers with large pore volumes were prepared and used as nanoconfinement framework material for LiBH4, and the nanoconfinement effect of graphene was revealed. After loading 70 wt% of LiBH4 and mechanically compressed at 350 MPa, 8.0 wt% of H2 can be released within 100 min at 320 °C, corresponding to the highest volumetric hydrogen storage density of 94.9 g H2 L−1 ever reported. Thanks to the nanoconfinement of graphene, the rate-limiting step of dehydrogenation of nanoconfined LiBH4 was changed and its apparent activation energy of the dehydrogenation (107.3 kJ mol−1) was 42 % lower than that of pure LiBH4. Moreover, the formation of the intermediate Li2B12H12 was effectively inhibited, and the stable nanoconfined structure enhanced the reversibility of LiBH4. This work widens the understanding of graphene's nanoconfinement effect and provides new insights for developing high-density hydrogen storage materials.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
林海完成签到,获得积分20
1秒前
1秒前
Asteria完成签到,获得积分10
1秒前
无花果应助十月的榴莲采纳,获得50
1秒前
2秒前
2秒前
xiha西希发布了新的文献求助10
2秒前
方远锋完成签到,获得积分10
3秒前
3秒前
香蕉觅云应助聪明贞采纳,获得10
3秒前
3秒前
xol发布了新的文献求助10
3秒前
AnhDinhTram完成签到,获得积分10
4秒前
4秒前
脑洞疼应助gg采纳,获得10
4秒前
Mai完成签到,获得积分10
4秒前
Raisin完成签到,获得积分10
4秒前
等等完成签到,获得积分10
4秒前
5秒前
Sjingjia完成签到,获得积分10
5秒前
5秒前
6秒前
小胖爱学习完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
8秒前
Owen应助cfn456采纳,获得30
8秒前
8秒前
8秒前
8秒前
陈杰完成签到,获得积分10
8秒前
汉堡包应助小高采纳,获得10
9秒前
10秒前
想看文献的人完成签到,获得积分10
10秒前
明理尔安发布了新的文献求助10
10秒前
10秒前
无花果应助xiha西希采纳,获得10
11秒前
shadow发布了新的文献求助30
11秒前
11秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3818116
求助须知:如何正确求助?哪些是违规求助? 3361221
关于积分的说明 10412156
捐赠科研通 3079427
什么是DOI,文献DOI怎么找? 1691254
邀请新用户注册赠送积分活动 814455
科研通“疑难数据库(出版商)”最低求助积分说明 768178