Genomic selection in plant breeding: Key factors shaping two decades of progress

基因组选择 生物 钥匙(锁) 选择(遗传算法) 生物技术 计算生物学 计算机科学 进化生物学 单核苷酸多态性 生态学 遗传学 基因型 人工智能 基因
作者
Admas Alemu,Johanna Åstrand,Osval A. Montesinos‐López,Julio Isidro y Sánchez,Javier Fernández-Gónzalez,Wuletaw Tadesse,Ramesh R. Vetukuri,Anders S. Carlsson,Alf Ceplitis,José Crossa,Rodomiro Ortíz,Aakash Chawade
出处
期刊:Molecular Plant [Elsevier BV]
卷期号:17 (4): 552-578 被引量:122
标识
DOI:10.1016/j.molp.2024.03.007
摘要

Genomic selection, the application of genomic prediction (GP) models to select candidate individuals, has significantly advanced in the past two decades, effectively accelerating genetic gains in plant breeding.This article provides a holistic overview of key factors that have influenced GP in plant breeding during this period.We delved into the pivotal roles of training population size and genetic diversity, and their relationship with the breeding population, in determining GP accuracy.Special emphasis was placed on optimizing training population size.We explored its benefits and the associated diminishing returns beyond an optimum size.This was done while considering the balance between resource allocation and maximizing prediction accuracy through current optimization algorithms.The density and distribution of single-nucleotide polymorphisms, level of linkage disequilibrium, genetic complexity, trait heritability, statistical machine-learning methods, and non-additive effects are the other vital factors.Using wheat, maize, and potato as examples, we summarize the effect of these factors on the accuracy of GP for various traits.The search for high accuracy in GP-theoretically reaching one when using the Pearson's correlation as a metric-is an active research area as yet far from optimal for various traits.We hypothesize that with ultra-high sizes of genotypic and phenotypic datasets, effective training population optimization methods and support from other omics approaches (transcriptomics, metabolomics and proteomics) coupled with deep-learning algorithms could overcome the boundaries of current limitations to achieve the highest possible prediction accuracy, making genomic selection an effective tool in plant breeding.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
甜甜亦丝发布了新的文献求助10
1秒前
2秒前
yxym完成签到 ,获得积分10
2秒前
凌会香完成签到,获得积分20
3秒前
wu发布了新的文献求助10
3秒前
3秒前
akakns发布了新的文献求助10
3秒前
包子完成签到,获得积分10
4秒前
5秒前
koi完成签到,获得积分10
5秒前
眼睛大的可乐完成签到,获得积分10
6秒前
默默发布了新的文献求助10
8秒前
wu完成签到,获得积分10
8秒前
一颗苹果完成签到 ,获得积分10
9秒前
夜莺应助uiui采纳,获得10
11秒前
Claire发布了新的文献求助30
13秒前
李健的小迷弟应助马李啸采纳,获得10
16秒前
16秒前
默默完成签到,获得积分10
17秒前
甜甜亦丝完成签到,获得积分10
19秒前
19秒前
20秒前
我是老大应助小次郎采纳,获得10
21秒前
香蕉海白发布了新的文献求助10
22秒前
瑾木完成签到,获得积分10
22秒前
23秒前
25秒前
漂亮绮彤发布了新的文献求助10
25秒前
njb发布了新的文献求助10
26秒前
26秒前
26秒前
哈先森发布了新的文献求助10
27秒前
香蕉觅云应助SoGoodMan采纳,获得10
28秒前
冷傲的强炫完成签到,获得积分10
29秒前
Donbin886完成签到,获得积分10
29秒前
华仔应助花花采纳,获得10
29秒前
29秒前
power完成签到,获得积分10
30秒前
jackmilton发布了新的文献求助10
30秒前
Cerys发布了新的文献求助10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Textbook of Neonatal Resuscitation ® 500
Why Neuroscience Matters in the Classroom 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5050643
求助须知:如何正确求助?哪些是违规求助? 4278259
关于积分的说明 13335988
捐赠科研通 4093268
什么是DOI,文献DOI怎么找? 2240220
邀请新用户注册赠送积分活动 1246861
关于科研通互助平台的介绍 1175806