Robust semi-automatic segmentation method: an expert assistant tool for muscles in CT and MR data

豪斯多夫距离 分割 计算机科学 人工智能 模式识别(心理学) 计算机视觉
作者
Mehran Azimbagirad,Guillaume Dardenne,D. Ben Salem,Jean-David Werthel,François Boux de Casson,Éric Stindel,Charles Garraud,Olivier Rémy‐Néris,Valérie Burdin
出处
期刊:Computer methods in biomechanics and biomedical engineering. Imaging & visualization [Taylor & Francis]
卷期号:11 (7)
标识
DOI:10.1080/21681163.2023.2301403
摘要

Image muscle segmentation is useful to quantitatively assess musculoskeletal diseases by extracting biomarkers such as shape, texture and water diffusivity metrics. Although volumetric manual segmentation is time consuming and a bottleneck in practice, fully automatic approaches are still in progress to reach an acceptable accuracy. In this paper, we provide a robust semi-automated tool to segment two musculoskeletal systems, i.e. thigh and shoulder in MRI and CT modalities, respectively. The tool only needs a few manually labelled cross-sections to build a directed graph-structure of corresponding points between the successive spaced slices. The boundaries of each muscle are obtained by performing a spline interpolation based on the directed graph-structure. Each muscle label and its corresponding 3D mesh are deduced using post-processing techniques. We evaluated the tool on 26 MRI thighs and 16 CT shoulders. Three metrics along with inter-muscle overlapping were employed to evaluate the tool by comparison to an expert manual segmentation and a publicly available tools (ITK-SNAP, 3D Slicer). The results showed a mean Dice 0.988±0.003, and Hausdorff Distance 4.86±1.67 mm in comparison to the manual reference for thigh muscle segmentation, and a mean Dice 0.961±0.005 and Hausdorff Distance 2.42±0.79 mm for shoulder muscle segmentation, outperformed the other methods. The tool is proposed as slicer module available at https://github.com/latimagine/SlicerSpline.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
高高的山兰完成签到 ,获得积分10
1秒前
loey发布了新的文献求助10
2秒前
zc发布了新的文献求助20
2秒前
科研助手6应助库里强采纳,获得10
3秒前
3秒前
4秒前
今后应助科研通管家采纳,获得10
5秒前
科目三应助科研通管家采纳,获得10
5秒前
科目三应助科研通管家采纳,获得10
6秒前
Orange应助科研通管家采纳,获得10
6秒前
天天快乐应助科研通管家采纳,获得30
6秒前
星辰大海应助科研通管家采纳,获得10
6秒前
Hello应助科研通管家采纳,获得10
6秒前
阿曾完成签到 ,获得积分10
6秒前
传奇3应助科研通管家采纳,获得10
6秒前
羲和之梦发布了新的文献求助10
6秒前
IMxYang应助科研通管家采纳,获得10
6秒前
Alex应助科研通管家采纳,获得20
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
蛇虫鼠蚁应助科研通管家采纳,获得100
7秒前
非而者厚应助科研通管家采纳,获得10
7秒前
非而者厚应助科研通管家采纳,获得10
7秒前
FashionBoy应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
夏淼发布了新的文献求助10
8秒前
快乐难敌发布了新的文献求助10
8秒前
英俊的铭应助许诺采纳,获得10
9秒前
9秒前
胡萝卜完成签到,获得积分10
10秒前
10秒前
12秒前
ing完成签到,获得积分10
12秒前
nakl完成签到,获得积分10
13秒前
温暖的钻石完成签到,获得积分10
14秒前
婉婉完成签到,获得积分10
14秒前
564654SDA完成签到,获得积分10
14秒前
哈哈2022完成签到,获得积分10
15秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816877
求助须知:如何正确求助?哪些是违规求助? 3360272
关于积分的说明 10407488
捐赠科研通 3078282
什么是DOI,文献DOI怎么找? 1690682
邀请新用户注册赠送积分活动 813990
科研通“疑难数据库(出版商)”最低求助积分说明 767958