Semi-Supervised Medical Image Segmentation Using Cross-Style Consistency With Shape-Aware and Local Context Constraints

计算机科学 过度拟合 分割 人工智能 一致性(知识库) 背景(考古学) 图像分割 机器学习 深度学习 编码(集合论) 网络体系结构 模式识别(心理学) 人工神经网络 古生物学 程序设计语言 集合(抽象数据类型) 生物 计算机安全
作者
Jinhua Liu,Christian Desrosiers,Dexin Yu,Yuanfeng Zhou
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (4): 1449-1461 被引量:11
标识
DOI:10.1109/tmi.2023.3338269
摘要

Despite the remarkable progress in semi-supervised medical image segmentation methods based on deep learning, their application to real-life clinical scenarios still faces considerable challenges. For example, insufficient labeled data often makes it difficult for networks to capture the complexity and variability of the anatomical regions to be segmented. To address these problems, we design a new semi-supervised segmentation framework that aspires to produce anatomically plausible predictions. Our framework comprises two parallel networks: shape-agnostic and shape-aware networks. These networks learn from each other, enabling effective utilization of unlabeled data. Our shape-aware network implicitly introduces shape guidance to capture shape fine-grained information. Meanwhile, shape-agnostic networks employ uncertainty estimation to further obtain reliable pseudo-labels for the counterpart. We also employ a cross-style consistency strategy to enhance the network's utilization of unlabeled data. It enriches the dataset to prevent overfitting and further eases the coupling of the two networks that learn from each other. Our proposed architecture also incorporates a novel loss term that facilitates the learning of the local context of segmentation by the network, thereby enhancing the overall accuracy of prediction. Experiments on three different datasets of medical images show that our method outperforms many excellent semi-supervised segmentation methods and outperforms them in perceiving shape. The code can be seen at https://github.com/igip-liu/SLC-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
天真的南烟完成签到,获得积分10
1秒前
Owen应助cg采纳,获得10
1秒前
1秒前
残幻完成签到,获得积分10
2秒前
科研通AI5应助洋芋片采纳,获得10
2秒前
2秒前
2秒前
lxiaok完成签到,获得积分10
2秒前
pluto应助H0oZz采纳,获得10
3秒前
xxx完成签到 ,获得积分10
3秒前
思源应助傲娇的凡旋采纳,获得10
3秒前
科研通AI5应助遇见飞儿采纳,获得10
4秒前
打打应助madao采纳,获得10
4秒前
4秒前
万能图书馆应助阿白采纳,获得10
5秒前
shenxian82133完成签到,获得积分10
5秒前
吴帆发布了新的文献求助10
6秒前
俭朴的猎豹完成签到,获得积分10
6秒前
CodeCraft应助刘十六采纳,获得10
6秒前
6秒前
Dsivan完成签到,获得积分10
7秒前
xxx发布了新的文献求助10
7秒前
蜡笔小新发布了新的文献求助10
7秒前
7秒前
8秒前
Winston发布了新的文献求助10
8秒前
Keray发布了新的文献求助30
8秒前
liu发布了新的文献求助20
8秒前
9秒前
9秒前
香蕉觅云应助nnnd77采纳,获得10
9秒前
顺利毕业mpa完成签到,获得积分10
10秒前
小小小杰完成签到,获得积分10
10秒前
ordin发布了新的文献求助10
10秒前
久久发布了新的文献求助10
11秒前
balko发布了新的文献求助10
11秒前
正直芒果发布了新的文献求助10
11秒前
12秒前
yuan应助贩卖日落采纳,获得10
12秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790218
求助须知:如何正确求助?哪些是违规求助? 3334933
关于积分的说明 10272867
捐赠科研通 3051419
什么是DOI,文献DOI怎么找? 1674665
邀请新用户注册赠送积分活动 802741
科研通“疑难数据库(出版商)”最低求助积分说明 760846