MedNAS: Multiscale Training-Free Neural Architecture Search for Medical Image Analysis

计算机科学 人工智能 水准点(测量) 机器学习 人工神经网络 上下文图像分类 特征提取 进化算法 模式识别(心理学) 图像(数学) 大地测量学 地理
作者
Yan Wang,Liangli Zhen,Jianwei Zhang,Miqing Li,Lei Zhang,Zizhou Wang,Yangqin Feng,Yu Xue,Xiao Wang,Zheng Chen,Tao Luo,Rick Siow Mong Goh,Yong Liu
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:28 (3): 668-681 被引量:9
标识
DOI:10.1109/tevc.2024.3352641
摘要

Deep neural networks have demonstrated impressive results in medical image analysis, but designing suitable architectures for each specific task is expertise-dependent and time-consuming. Neural architecture search (NAS) offers an effective means of discovering architectures. It has been highly successful in numerous applications, particularly in natural image classification. Yet, medical images possess unique characteristics, such as small regions and a wide variety of lesion sizes, that differentiate them from natural images. Furthermore, most current NAS methods struggle with high computational costs, especially when dealing with high-resolution image datasets. In this paper, we present a novel evolutionary neural architecture search method called Multi-Scale Training-Free Neural Architecture Search to address these challenges. Specifically, to accommodate the broad range of lesion region sizes in disease diagnosis, we develop a new reduction cell search space that enables the search algorithm to explicitly identify the optimal scale combination for multi-scale feature extraction. To overcome the issue of high computational costs, we utilize training-free indicators as performance measures for candidate architectures, which allows us to search for the optimal architecture more efficiently. More specifically, by considering the capability and simplicity of various networks, we formulate a multi-objective optimization problem that involves two training-free indicators and model complexity for candidate architectures. Extensive experiments on a large medical image benchmark and a publicly available breast cancer detection dataset are conducted. The empirical results demonstrate that our MSTF-NAS outperforms both human-designed architectures and current state-of-the-art NAS algorithms on both datasets, indicating the effectiveness of our proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
青鸟应助科研通管家采纳,获得10
刚刚
李健应助科研通管家采纳,获得10
刚刚
xdx应助科研通管家采纳,获得20
刚刚
上官若男应助科研通管家采纳,获得10
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
香蕉觅云应助科研通管家采纳,获得10
刚刚
无花果应助科研通管家采纳,获得50
1秒前
3秒前
3秒前
wp4455777发布了新的文献求助10
4秒前
dada发布了新的文献求助10
6秒前
慧慧发布了新的文献求助10
7秒前
7秒前
共享精神应助hexinyu采纳,获得10
7秒前
8秒前
kiki发布了新的文献求助10
9秒前
飞跃海龙发布了新的文献求助10
10秒前
Xyx发布了新的文献求助10
12秒前
yushuzhang发布了新的文献求助10
13秒前
13秒前
14秒前
玮丶发布了新的文献求助10
16秒前
只想摆烂发布了新的文献求助20
17秒前
逗逗发布了新的文献求助10
18秒前
19秒前
地球战神完成签到,获得积分10
20秒前
23秒前
小蘑菇应助dqw采纳,获得30
23秒前
AA发布了新的文献求助50
23秒前
科研通AI5应助xixixixi采纳,获得10
24秒前
yushuzhang完成签到,获得积分10
24秒前
李健应助dada采纳,获得10
25秒前
zby发布了新的文献求助10
26秒前
27秒前
Jiayi完成签到 ,获得积分10
27秒前
无花果应助Pony采纳,获得10
29秒前
酷波er应助Xyx采纳,获得10
30秒前
33秒前
34秒前
Serendipity应助mariawang采纳,获得10
34秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
求polyinfo中的所有数据,主要要共聚物的,有偿。 1500
Mechanics of Composite Strengthening 1500
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 800
水产动物免疫学 500
鱼类基因组学及基因组物种技术 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4176574
求助须知:如何正确求助?哪些是违规求助? 3711838
关于积分的说明 11705529
捐赠科研通 3394692
什么是DOI,文献DOI怎么找? 1862417
邀请新用户注册赠送积分活动 921170
科研通“疑难数据库(出版商)”最低求助积分说明 833056