Bearing fault damage degree identification method based on SSA-VMD and Shannon entropy–exponential entropy decision

算法 方位(导航) 峰度 熵(时间箭头) 控制理论(社会学) 数学 计算机科学 模式识别(心理学) 人工智能 物理 统计 量子力学 控制(管理)
作者
Xiaochi Luan,Chenghao Zhong,Fengtong Zhao,Yundong Sha,Gongmin Liu
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:23 (5): 3105-3133 被引量:23
标识
DOI:10.1177/14759217231219710
摘要

Aiming at the problem that the weak fault signal of rolling bearing is affected by background noise and the weak fault signal itself leads to the difficulty in extracting fault features, a weak fault diagnosis method of rolling bearing based on sparrow search algorithm-variational mode decomposition (SSA-VMD) and Shannon entropy–exponential entropy decision is proposed. Firstly, the failure energy ratio of the original signal is acquired to judge the bearing failure. Secondly, the original time-domain signal is decomposed by the VMD optimized by SSA-VMD to obtain the Intrinsic Mode Function (IMF) component, and the kurtosis and correlation coefficient are normalized and fused. The fusion parameter ratio ( R V ) is used to filter the IMF component, and the filtered component is reconstructed to achieve the noise reduction effect. The reconstructed signal is subjected to Hilbert transform to obtain the envelope spectrum of the vibration signal, and the fault type of the bearing can be judged. Finally, the entropy of the reconstructed signal is input into the model based on entropy-multilayer forward neural network (MFNN) to identify the degree of bearing fault damage. The effectiveness of the method is verified by using the experimental data of different fault types of intermediate shaft bearings in Shenyang Aerospace University and the self-built experimental data of outer ring fault detachment evolution. The results show that the fault energy ratio of the original signal is more conducive to judging whether the bearing has a fault than the reconstructed signal. The bearing fault type diagnosis method based on SSA-VMD and parameter fusion screening can effectively identify fault characteristic frequency and its frequency doubling of the inner and outer rings of rolling bearings. The entropy values of different bearing damage signals have different distribution regions, which verify the effectiveness of the bearing fault damage identification method based on entropy–MLP judgement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
二七完成签到 ,获得积分10
1秒前
2秒前
jia发布了新的文献求助10
2秒前
3秒前
3秒前
5秒前
6秒前
gyes完成签到 ,获得积分20
6秒前
李lll发布了新的文献求助10
6秒前
Chaos发布了新的文献求助10
6秒前
8秒前
8秒前
石翎发布了新的文献求助10
9秒前
9秒前
lvben发布了新的文献求助10
11秒前
所所应助相金鹏采纳,获得10
11秒前
fengfengman完成签到,获得积分10
11秒前
uone完成签到,获得积分10
11秒前
坚强幼晴发布了新的文献求助10
11秒前
111关闭了111文献求助
12秒前
12秒前
Lucas应助李lll采纳,获得10
13秒前
科目三应助xsw采纳,获得10
13秒前
咻咻完成签到,获得积分10
13秒前
Raphael Zhang发布了新的文献求助10
14秒前
搜集达人应助lynn采纳,获得10
14秒前
Jelly完成签到,获得积分10
14秒前
烟花应助pakyl采纳,获得10
14秒前
浮游应助Iridesent0v0采纳,获得10
15秒前
Chaos完成签到,获得积分10
15秒前
15秒前
科研通AI6应助想瘦的海豹采纳,获得30
15秒前
英姑应助luo采纳,获得30
16秒前
16秒前
16秒前
16秒前
杨永康发布了新的文献求助10
16秒前
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Routledge Handbook on Spaces of Mental Health and Wellbeing 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5320015
求助须知:如何正确求助?哪些是违规求助? 4461987
关于积分的说明 13885224
捐赠科研通 4352699
什么是DOI,文献DOI怎么找? 2390804
邀请新用户注册赠送积分活动 1384435
关于科研通互助平台的介绍 1354258