Latent Variable Machine Learning Framework for Catalysis: General Models, Transfer Learning, and Interpretability

可解释性 潜变量 人工智能 计算机科学 机器学习 变量(数学) 数学 数学分析
作者
Gbolade O. Kayode,M. M. Montemore
出处
期刊:JACS Au [American Chemical Society]
卷期号:4 (1): 80-91 被引量:9
标识
DOI:10.1021/jacsau.3c00419
摘要

Machine learning has been successfully applied in recent years to screen materials for a variety of applications. However, despite recent advances, most screening-based machine learning approaches are limited in generality and transferability, requiring new models to be created from scratch for each new application. This is particularly apparent in catalysis, where there are many possible intermediates and transition states of interest in addition to a large number of potential catalytic materials. In this work, we developed a new machine learning framework that is built on chemical principles and allows the creation of general, interpretable, reusable models. Our new architecture uses latent variables to create a set of submodels that each take on a relatively simple learning task, leading to higher data efficiency and promoting transfer learning. This architecture infuses fundamental chemical principles, such as the existence of elements as discrete entities. We show that this architecture allows for the creation of models that can be reused for many different applications, providing significant improvements in efficiency and convenience. For example, our architecture allows simultaneous prediction of adsorption energies for many adsorbates on a broad array of alloy surfaces with mean absolute errors (MAEs) around 0.20-0.25 eV. The integration of latent variables provides physical interpretability, as predictions can be explained in terms of the learned chemical environment as represented by the latent space. Further, these latent variables also serve as new feature representations, allowing efficient transfer learning. For example, new models with useful levels of accuracy can be created with less than 10 data points, including transfer learning to an experimental data set with an MAE less than 0.15 eV. Lastly, we show that our new machine learning architecture is general and robust enough to handle heterogeneous and multifidelity data sets, allowing researchers to leverage existing data sets to speed up screening using their own computational setup.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助苹果绝山采纳,获得10
刚刚
义气的友瑶完成签到,获得积分10
刚刚
恒恒666完成签到,获得积分10
2秒前
桐桐应助缘起缘灭采纳,获得10
2秒前
荷月初六发布了新的文献求助10
2秒前
3秒前
领导范儿应助王阳洋采纳,获得10
3秒前
klpkyx完成签到,获得积分10
3秒前
5tcl发布了新的文献求助30
3秒前
Orange应助Draeck采纳,获得10
5秒前
852应助luckly采纳,获得10
9秒前
摸鱼王完成签到,获得积分10
10秒前
hhhh完成签到,获得积分10
11秒前
diu发布了新的文献求助600
11秒前
5tcl完成签到,获得积分10
11秒前
11秒前
喵老希完成签到 ,获得积分10
13秒前
15秒前
15秒前
量子星尘发布了新的文献求助10
16秒前
Jasper应助tough_cookie采纳,获得10
17秒前
Joyce完成签到 ,获得积分10
19秒前
泽锦臻发布了新的文献求助10
20秒前
20秒前
天天快乐应助小李采纳,获得10
20秒前
大渣饼完成签到 ,获得积分10
20秒前
21秒前
fate完成签到,获得积分10
21秒前
22秒前
luckly发布了新的文献求助10
23秒前
852应助科研通管家采纳,获得10
23秒前
24秒前
Akim应助科研通管家采纳,获得10
24秒前
浮游应助科研通管家采纳,获得10
24秒前
浮游应助科研通管家采纳,获得10
24秒前
mwx应助科研通管家采纳,获得10
24秒前
mwx应助科研通管家采纳,获得10
24秒前
我是老大应助科研通管家采纳,获得10
24秒前
852应助科研通管家采纳,获得10
24秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532650
求助须知:如何正确求助?哪些是违规求助? 4621382
关于积分的说明 14577620
捐赠科研通 4561234
什么是DOI,文献DOI怎么找? 2499258
邀请新用户注册赠送积分活动 1479203
关于科研通互助平台的介绍 1450406