Text-to-Image Person Re-Identification Based on Multimodal Graph Convolutional Network

计算机科学 人工智能 图形 鉴定(生物学) 卷积神经网络 模式识别(心理学) 自然语言处理 情报检索 理论计算机科学 植物 生物
作者
Guang Han,Min Lin,Ziyang Li,Haitao Zhao,Sam Kwong
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 6025-6036 被引量:7
标识
DOI:10.1109/tmm.2023.3344354
摘要

Text-to-image person re-identification (ReID) is a common subproblem in the field of person re-identification and image-text retrieval. Recent approaches generally follow the structure of a dual-stream network, extracting image and text features. There is no deep interaction between images and text in this approach, making it difficult for the network to learn a highly semantic feature representation. In addition, for both image data and text data, the feature extraction process is modeled in a regular way, such as using Transformer to extract sequence embeddings. However, this type of modeling disregards the inherent relationships among multimodal input embeddings. A more flexible approach to mining multimodal data, which uniformly treats the data as graphs, is proposed. In this way, the extraction and interaction of multimodal information are accomplished by means of messages passing between graph nodes. First, a unified multimodal feature extraction and fusion network is proposed based on the graph convolutional network, which enables the progression of multimodal information from 'local' to 'global'. Second, an asymmetric multilevel alignment module, which focuses on more accurate 'local' information from a 'global' perspective, is proposed to progressively divide the multimodal information at each level. Last, a cross-modal representation matching strategy based on similarity distribution and mutual information is proposed to achieve cross-modal alignment. The proposed algorithm in this paper is simple and efficient, and the testing results on three public datasets (CUHK-PEDES, ICFG-PEDES and RSTPReID) show that it can achieve SOTA-level performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助111采纳,获得10
6秒前
Hongtao完成签到 ,获得积分10
6秒前
车间我完成签到 ,获得积分10
7秒前
DJDJ完成签到,获得积分10
8秒前
桐桐应助一一采纳,获得30
9秒前
陈龙发布了新的文献求助30
9秒前
9秒前
情怀应助lulu采纳,获得10
10秒前
111完成签到,获得积分10
12秒前
13秒前
赵焱峥完成签到,获得积分10
14秒前
llll发布了新的文献求助10
14秒前
15秒前
swy完成签到 ,获得积分10
15秒前
共享精神应助科研通管家采纳,获得10
16秒前
大腚疯猪应助科研通管家采纳,获得10
16秒前
小二郎应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
脑洞疼应助科研通管家采纳,获得10
16秒前
桐桐应助科研通管家采纳,获得10
16秒前
glj应助科研通管家采纳,获得10
16秒前
JamesPei应助科研通管家采纳,获得10
16秒前
星辰大海应助科研通管家采纳,获得10
16秒前
roclie完成签到,获得积分10
16秒前
16秒前
16秒前
甜甜戎发布了新的文献求助10
18秒前
111发布了新的文献求助10
18秒前
20秒前
清脆代桃完成签到 ,获得积分10
20秒前
锣大炮完成签到 ,获得积分10
21秒前
21秒前
Yaome完成签到,获得积分10
22秒前
科研通AI5应助東風采纳,获得10
22秒前
研友_VZG7GZ应助苏雅霏采纳,获得10
25秒前
moxi摩西完成签到,获得积分10
26秒前
多喝烫水完成签到,获得积分10
28秒前
万骛完成签到,获得积分10
32秒前
33秒前
Akim应助周小鱼采纳,获得10
33秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801432
求助须知:如何正确求助?哪些是违规求助? 3347164
关于积分的说明 10332162
捐赠科研通 3063465
什么是DOI,文献DOI怎么找? 1681720
邀请新用户注册赠送积分活动 807670
科研通“疑难数据库(出版商)”最低求助积分说明 763852